Suscripción a Biblioteca: Guest
Plasma Medicine

Publicado 4 números por año

ISSN Imprimir: 1947-5764

ISSN En Línea: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Bacterial Inactivation in Liquids Using Multi-Gas Plasmas

Volumen 2, Edición 4, 2012, pp. 237-247
DOI: 10.1615/PlasmaMed.2014010792
Get accessDownload

SINOPSIS

Using a multi-gas plasma jet, we generated plasmas of various gas species such as argon, oxygen, nitrogen, carbon dioxide, and air. Photometric measurements of colorforming reactions were used to identify singlet oxygen, OH radicals, hydrogen peroxide, NO radicals, nitrite, and nitrate, which are important sterilization agents that are generated in the liquid phase. Oxygen plasma generated the largest amount of singlet oxygen, OH radicals, and hydrogen peroxide. Air plasma generated NO radicals, nitrite, and nitrate. The pH of air plasma−treated water for 120 s dropped below 3.0. The air plasma sterilized Escherichia coli in distilled water after 120 s of treatment. In addition, when the initial pH was fixed below 3.6, E. coli was more effectively sterilized by oxygen plasma. Furthermore, dimethylsulfoxide, which is an OH radical scavenger, suppressed the sterilization effect of oxygen plasma.

CITADO POR
  1. Iwai Takahiro, Okumura Kensuke, Kakegawa Ken, Miyahara Hidekazu, Okino Akitoshi, A pulse-synchronized microplasma atomic emission spectroscopy system for ultrasmall sample analysis, J. Anal. At. Spectrom., 29, 11, 2014. Crossref

  2. Takamatsu Toshihiro, Kawano Hiroaki, Miyahara Hidekazu, Azuma Takeshi, Okino Akitoshi, Atmospheric nonequilibrium mini-plasma jet created by a 3D printer, AIP Advances, 5, 7, 2015. Crossref

  3. Oshita Takaya, Kawano Hiroaki, Takamatsu Toshihiro, Miyahara Hidekazu, Okino Akitoshi, Temperature Controllable Atmospheric Plasma Source, IEEE Transactions on Plasma Science, 43, 6, 2015. Crossref

  4. Kramer Axel, Bekeschus Sander, Matthes Rutger, Bender Claudia, Stope Matthias B., Napp Matthias, Lademann Olaf, Lademann Jürgen, Weltmann Klaus-Dieter, Schauer Frieder, Cold Physical Plasmas in the Field of Hygiene-Relevance, Significance, and Future Applications, Plasma Processes and Polymers, 12, 12, 2015. Crossref

  5. Takamatsu Toshihiro, Kawano Hiroaki, Sasaki Yota, Uehara Kodai, Miyahara Hidekazu, Matsumura Yuriko, Iwasawa Atsuo, Azuma Takeshi, Okino Akitoshi, Imaging of the Staphylococcus aureus Inactivation Process Induced by a Multigas Plasma Jet, Current Microbiology, 73, 6, 2016. Crossref

  6. Kramer Axel, Matthes Rutger, Bekeschus Sander, Bender Claudia, Napp Matthias, Lademann Olaf, Lademann Jürgen, Weltmann Klaus Dieter, Aktueller und perspektivischer Einsatz kalter Plasmen aus hygienischer Indikation, in Plasmamedizin, 2016. Crossref

  7. Siciliano Ilenia, Spadaro Davide, Prelle Ambra, Vallauri Dario, Cavallero Maria, Garibaldi Angelo, Gullino Maria, Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins, Toxins, 8, 5, 2016. Crossref

  8. Chauvin Julie, Judée Florian, Yousfi Mohammed, Vicendo Patricia, Merbahi Nofel, Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet, Scientific Reports, 7, 1, 2017. Crossref

  9. Nomura Yudai, Takamatsu Toshihiro, Kawano Hiroaki, Miyahara Hidekazu, Okino Akitoshi, Yoshida Masaru, Azuma Takeshi, Investigation of blood coagulation effect of nonthermal multigas plasma jet in vitro and in vivo, Journal of Surgical Research, 219, 2017. Crossref

  10. Takamatsu Toshihiro, Uehara Kodai, Sasaki Yota, Hidekazu Miyahara, Matsumura Yuriko, Iwasawa Atsuo, Ito Norihiko, Kohno Masahiro, Azuma Takeshi, Okino Akitoshi, Yousfi Mohammed, Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet, PLOS ONE, 10, 7, 2015. Crossref

  11. Application of Plasma to Humans (Blood Coagulation and Regenerative Medicine), in Plasma Medical Science, 2019. Crossref

  12. Shirai Naoki, Matsuda Yutaka, Sasaki Koichi, Visualization of short-lived reactive species in liquid in contact with atmospheric-pressure plasma by chemiluminescence of luminol, Applied Physics Express, 11, 2, 2018. Crossref

  13. Khlyustova Anna, Labay Cédric, Machala Zdenko, Ginebra Maria-Pau, Canal Cristina, Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review, Frontiers of Chemical Science and Engineering, 13, 2, 2019. Crossref

  14. Miyamoto Kenji, Ikehara Yuzuru, A measurement method for determining the correlation between the amount of haemolysis and the electric current in low‐temperature plasma treatment, Plasma Processes and Polymers, 16, 5, 2019. Crossref

  15. NAMURA Yasuhiro, UCHIDA Yasuki, SATO Ryoichi, SHIMIZU Noriyoshi, MOTOYOSHI Mitsuru, TSUTSUMI Yusuke, HANAWA Takao, YONEYAMA Takayuki, Changes in surface properties of dental alloys with atmospheric plasma irradiation, Dental Materials Journal, 39, 3, 2020. Crossref

  16. Iwai Takahiro, Inoue Hiroki, Kakegawa Ken, Ohrui Yasuhiko, Nagoya Tomoki, Nagashima Hisayuki, Miyahara Hidekazu, Chiba Koichi, Seto Yasuo, Okino Akitoshi, Development of a High-Efficiency Decomposition Technology for Volatile Chemical Warfare Agent Sarin Using Dielectric Barrier Discharge, Plasma Chemistry and Plasma Processing, 40, 4, 2020. Crossref

  17. Li Z, Liu J, Lu X, A large atmospheric pressure nonequilibrium open space air plasma based on a rotating electrode, Plasma Sources Science and Technology, 29, 4, 2020. Crossref

  18. Rostas Arpad Mihai, Ledernez Loic, Dietel Lisa, Heidinger Lorenz, Bergmann Michael, Altenburger Markus, Bruch Richard, Urban Gerald, Schleicher Erik, Weber Stefan, Direct EPR detection of atomic nitrogen in an atmospheric nitrogen plasma jet, Physical Chemistry Chemical Physics, 22, 7, 2020. Crossref

  19. Zhao Yi‐Ming, Patange Apurva, Sun Da‐Wen, Tiwari Brijesh, Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry, Comprehensive Reviews in Food Science and Food Safety, 19, 6, 2020. Crossref

  20. Caba Bogdan, Gardikiotis Ioannis, Topala Ionut, Mihaila Ilarion, Mihai Cosmin Teodor, Luca Catalina, Pasca Sorin, Caba Ioana Cezara, Dimitriu Gabriel, Huzum Bogdan, Serban Ionela Lacramioara, Cold Atmospheric Plasma, Platelet-Rich Plasma, and Nitric Oxide Synthesis Inhibitor: Effects Investigation on an Experimental Model on Rats, Applied Sciences, 12, 2, 2022. Crossref

  21. Todorova Yovana, Benova Evgenia, Marinova Plamena, Yotinov Ivaylo, Bogdanov Todor, Topalova Yana, Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch, Processes, 10, 3, 2022. Crossref

  22. Kurosawa Manabu, Takamatsu Toshihiro, Kawano Hiroaki, Hayashi Yuta, Miyahara Hidekazu, Ota Syosaku, Okino Akitoshi, Yoshida Masaru, Endoscopic Hemostasis in Porcine Gastrointestinal Tract Using CO2 Low-Temperature Plasma Jet, Journal of Surgical Research, 234, 2019. Crossref

  23. Rahman Mizanur, Hasan Md. Shariful, Islam Raihanul, Rana Rahmatuzzaman, Sayem ASM, Sad Md. Abdullah As, Matin Abdul, Raposo António, Zandonadi Renata Puppin, Han Heesup, Ariza-Montes Antonio, Vega-Muñoz Alejandro, Sunny Atiqur Rahman, Plasma-Activated Water for Food Safety and Quality: A Review of Recent Developments, International Journal of Environmental Research and Public Health, 19, 11, 2022. Crossref

  24. Yahaya A. G., Okuyama T., Kristof J., Blajan M. G., Shimizu K., The Physicochemical/Electrical Properties of Plasma Activated Medium by Dielectric Barrier Discharge Microplasma, in Research and Education: Traditions and Innovations, 422, 2022. Crossref

  25. Fallon Muireann, Conway James , Kennedy Sarah , Kumar Sharath , Daniels Stephen , Humphreys Hilary , The Effect of Cold Plasma Operating Parameters on the Production of Reactive Oxygen and Nitrogen Species and the Resulting Antibacterial and Antibiofilm Efficiency , Plasma Medicine, 12, 1, 2022. Crossref

  26. IWAI Takahiro, Development of Highly Sensitive Inorganic/Organic Analytical Systems for Ultrasmall Samples Using Atmospheric Pressure Plasmas, BUNSEKI KAGAKU, 71, 7.8, 2022. Crossref

1039 Vistas de artículos 10114 Descargas de artículos Métrica
1039 PUNTOS DE VISTA 10114 DESCARGAS 26 Crossref CITAS Google
Scholar
CITAS

Artículos con contenido similar:

Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Pseudomonas aeruginosa Biofilm Eradication Plasma Medicine, Vol.7, 2017, issue 1
Diana Grondona, Leandro Giuliani, Juliana Soler-Arango, Magali Xaubet, Graciela Brelles-Mariño
Acidification and Nitrite/Nitrate Accumulation by Nonthermal Dielectric Barrier Discharge (DBD) Affect Human Dermal Fibroblasts Plasma Medicine, Vol.5, 2015, issue 1
Sabrina Baldus, Paul C. Fuchs, Christian Oplander, Kiara Heuer, Christoph V. Suschek, Julian Balzer, Peter Awakowicz, Erhan Demir, Martin A. Hoffmanns
The Potential Use of a Cold Atmospheric Plasma Jet for Decontamination of Hospital Surfaces. A Pilot Study Plasma Medicine, Vol.11, 2021, issue 1
Sarah Kennedy, Muireann Fallon, Stephen Daniels, Sharath Kumar, Hilary Humphreys
Non-Thermal Atmospheric Dielectric Barrier Discharge Plasma, Medical Application Studies in Thailand Plasma Medicine, Vol.6, 2016, issue 3-4
Chanchai Chutsirimongkol, Wasini Techawatthanawisan, Treenuch Kundilokchai, Dheerawan Boonyawan, Paisal Rummaneethorn, Apirag Chuangsuwanit, Chayanid Bunsaisup, Pannapa Powthong, Wicharn Kirdwichai, Niwat Polnikorn
Inactivation of Consortiums of Microorganisms by Air Plasma Jet at Atmospheric Pressure Plasma Medicine, Vol.7, 2017, issue 2
Aliaksandra V. Kazak, Leanid V. Simonchik, N. V. Dudchik, O. E. Nezhvinskaya, A. A. Kirillov
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain