Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
TsAGI Science Journal

ISSN Imprimir: 1948-2590
ISSN En Línea: 1948-2604

TsAGI Science Journal

DOI: 10.1615/TsAGISciJ.2019031630
pages 429-442

INVESTIGATION OF CALCULATION ERROR FOR STRESS INTENSITY FACTORS APPLYING THE J-INTEGRAL METHOD

Mariya Alexandrovna Glebova
Central Aerohydrodynamic Institute (TsAGI), 1, Zhukovsky Str., Zhukovsky, Moscow Region, 140180, Russian Federation
Vyacheslav Ivanovich Grishin
Central Aerohydrodynamic Institute (TsAGI), Zhukovsky Str. 1, Zhukovsky, Moscow Region, 140180 Russia
Svetlana Vladimirovna Tsoy
Irkut Corporation, 68, Leningradsky prospect, Moscow, 125315, Russian Federation
Rostislav Viktorovich Voronkov
Central Aerohydrodynamic Institute (TsAGI), 1, Zhukovsky Str., Zhukovsky, Moscow Region, 140180, Russian Federation
Andrey Grigorievich Yashutin
Irkut Corporation, 68, Leningradsky Prospect, Moscow, 125315, Russian Federation

SINOPSIS

A method of improving the solution convergence when calculating stress intensity factors at crack tips is proposed. Examples of modeling and solving practical problems in determining the stress intensity factors in plates with various cracks are presented. The results are compared with analytical data.

REFERENCIAS

  1. Parton, V.Z. and Morozov, E.M., Mechanics of Elastic-Plastic Fracture: Fundamentals of Fracture Mechanics, Moscow: Izd-vo LKI, 2008.

  2. Kolosov, G.V., About One Application of Complex Variable Functions to Plane Problem of Mathematical Theory of Elasticity, Yuriev: Tipogr. Mattisena, 1909.

  3. Westergard, H.M., Stresses at a Crack, Size of the Crack and the Bending of Reinforced Concrete, J. Am. Concr. Inst, 5(2):93-103, 1993.

  4. Williams, M.L., On the Stress Distribution at the Base of a Stationary Crack, Trans. ASME J. Appl. Mech, 24(1):109-114, 1957.

  5. Murakami, Y., Stress Intensity Factors Handbook, vols. 1 and 2, Elmsford, NY: Pergamon Press, 1987.

  6. Morozov, E.M. and Nikishkov, G.P., Finite-Element Method in Fracture Mechanics, Moscow: Izd-vo LKI, 2008.

  7. Eleonsk, S.I., Odintsev, I.N., Pisarev, V.S., and Chernov, A.V., Investigation of Crack Propagation Process by Measurements of Local Deformation Response: I. Actual Stress Field, TsAGI Sci. J, 46(7):687-714, 2015.

  8. Pisarev, V.S., Matvienko, Y.G., Eleonsky, S.I., and Odintsev, I.N., Combining the Crack Compliance Method and Speckle Interferometry Data for Determination of Stress Intensity Factors and T-Stresses, Eng. Fract. Mech, 179:348-374, 2017.

  9. Dassault Systemes, Abaqus Theory Manual, Providence, RI: Dassault Systemes Simulia Corp., 2011.

  10. Tada, H., A Note on the Finite Width Corrections to the Stress Intensity Factor, Eng. Fract. Mech, 3(3):345-347, 1971.

  11. Isida, M., Analysis of Stress Intensity Factors for the Tension of a Centrally Cracked Strip with Stiffened Edges, Eng. Fract. Mech, 5(3):647-665,1973.

  12. Newman, J.C., An Improved Method of Collocation for the Stress Analysis of Cracked Plates with Various Shaped Boundaries, NASA TND-6376, pp. 1-45, 1971.

  13. Fett, T. and Munz, D., Stress Intensity Factors and Weight Functions, Southampton, U.K.: Computational Mechanics Publications, pp. 1-42, 1997.

  14. Bowie, O.L., Solutions of Plane Crack Problems by Mapping Techniques, in Method ofAnalysis and Solutions of Crack Problems, Mechanics of Fracture Mechanics of Fracture Series, vol. 1, G.C. Sih, Ed., Leiden, Netherlands: Noordhoof International Publishing, pp. 1-55,1972.

  15. Theocaris, P.S. and Ioakimidis, N.I., A Star-Shaped Array of Curvilinear Cracks in an Infinite Elastic Medium, Trans. ASME, Ser. E, J Appl. Mech., 44(4):619-624, 1997.


Articles with similar content:

EXTENSIONS OF THE TWO-SCALE GENERALIZED FINITE ELEMENT METHOD TO NONLINEAR FRACTURE PROBLEMS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
Armando Duarte, Dae-Jin Kim, Varun Gupta
APPLICATION OF THE MULTISCALE FEM TO THE DETERMINATION OF MACROSCOPIC DEFORMATIONS CAUSED BY DISSOLUTION PRECIPITATION CREEP
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 2
Klaus Hackl, Sandra Klinge
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
THE EXPLORATION OF EFFECTIVE RADIATION FOR SOLVING THREE DIMENSIONAL RADIANT TEMPERATURE DISTRIBUTION
Energy and Environment, 1995, Vol.0, 1995, issue
YaJun Xia
THE ASYMPTOTIC THEORY OF THERMOELASTICITY OF MULTILAYER COMPOSITE PLATES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 1
D. O. Yakovlev, Yu. I. Dimitrienko