Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2012003668
pages 289-319

AN OVERVIEW OF INVERSE MATERIAL IDENTIFICATION WITHIN THE FRAMEWORKS OF DETERMINISTIC AND STOCHASTIC PARAMETER ESTIMATION

Miguel A. Aguilo
Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, MS 1318, Albuquerque, New Mexico 87185-1320, USA
Laura P. Swiler
Optimization and Uncertainty Quantification Department, Sandia National Laboratories, P.O. Box 5800, MS 1318, Albuquerque, New Mexico 87185, USA
Angel Urbina
Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, MS 1318, Albuquerque, New Mexico 87185-1320, USA

SINOPSIS

This work investigates the problem of parameter estimation within the frameworks of deterministic and stochastic parameter estimation methods. For the deterministic methods, we look at constrained and unconstrained optimization approaches. For the constrained optimization approaches we study three different formulations: L2, error in constitutive equation method (ECE), and the modified error in constitutive equation (MECE) method. We investigate these formulations in the context of both Tikhonov and total variation (TV) regularization. The constrained optimization approaches are compared with an unconstrained nonlinear least-squares (NLLS) approach. In the least-squares framework we investigate three different formulations: standard, MECE, and ECE. With the stochastic methods, we first investigate Bayesian calibration, where we use Monte Carlo Markov chain (MCMC) methods to calculate the posterior parameter estimates. For the Bayesian methods, we investigate the use of a standard likelihood function, a likelihood function that incorporates MECE, and a likelihood function that incorporates ECE. Furthermore, we investigate the maximum a posteriori (MAP) approach. In the MAP approach, parameters′ full posterior distribution are not generated via sampling; however, parameter point estimates are computed by searching for the values that maximize the parameters′ posterior distribution. Finally, to achieve dimension reduction in both the MCMC and NLLS approaches, we approximate the parameter field with radial basis functions (RBF). This transforms the parameter estimation problem into one of determining the governing parameters for the RBF.


Articles with similar content:

APPROXIMATE LEVEL-CROSSING PROBABILITIES FOR INTERACTIVE VISUALIZATION OF UNCERTAIN ISOCONTOURS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Christoph Petz, Hans-Christian Hege, Kai Poethkow
DATA-FREE INFERENCE OF UNCERTAIN PARAMETERS IN CHEMICAL MODELS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Bert J. Debusschere, Robert D. Berry, Habib N. Najm, Cosmin Safta, Khachik Sargsyan
STOCHASTIC DYNAMIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES WITH GENERAL NONUNIFORM RANDOM PARAMETERS BY MINIMIZING GL2-DISCREPANCY
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Jianbing Chen, Pengyan Song, Xiaodan Ren
INVERSE PROBLEMS OF RADIATIVE TRANSFER IN ABSORBING, EMITTING AND SCATTERING MEDIA
ICHMT DIGITAL LIBRARY ONLINE, Vol.7, 1995, issue
M. N. Ozisik, J. C. Bokar
Method of Resolving Functions in the Group Pursuit Problem with a Terminal Pay Off Function and Integral Constraints on Controls
Journal of Automation and Information Sciences, Vol.51, 2019, issue 4
Iosif S. Rappoport