Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 4.911 Factor de Impacto de 5 años: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2012003889
pages 357-370

AN ENSEMBLE KALMAN FILTER USING THE CONJUGATE GRADIENT SAMPLER

Johnathan M. Bardsley
Department of Mathematical Sciences, The University of Montana, Missoula, Montana 59812-0864, USA
Antti Solonen
Lappeenranta University of Technology, Laboratory of Applied Mathematics
Albert Parker
Center for Biofilm Engineering, Montana State University, Bozeman, Montana, 59717, USA
Heikki Haario
Department of Mathematics and Physics, Lappeenranta University of Technology; Finnish Meteorological Institute, Helsinki, Finland
Marylesa Howard
Department of Mathematical Sciences, University of Montana, Missoula, Montana, 59812

SINOPSIS

The ensemble Kalman filter (EnKF) is a technique for dynamic state estimation. EnKF approximates the standard extended Kalman filter (EKF) by creating an ensemble of model states whose mean and empirical covariance are then used within the EKF formulas. The technique has a number of advantages for large-scale, nonlinear problems. First, large-scale covariance matrices required within EKF are replaced by low-rank and low-storage approximations, making implementation of EnKF more efficient. Moreover, for a nonlinear state space model, implementation of EKF requires the associated tangent linear and adjoint codes, while implementation of EnKF does not. However, for EnKF to be effective, the choice of the ensemble members is extremely important. In this paper, we show how to use the conjugate gradient (CG) method, and the recently introduced CG sampler, to create the ensemble members at each filtering step. This requires the use of a variational formulation of EKF. The effectiveness of the method is demonstrated on both a large-scale linear, and a small-scale, nonlinear, chaotic problem. In our examples, the CG-EnKF performs better than the standard EnKF, especially when the ensemble size is small.


Articles with similar content:

A MULTISCALE COMPUTATIONAL METHOD FOR 2D ELASTOPLASTIC DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Hongwu Zhang, Hui Liu
Iterative Algorithms for Computing the Averaged Response of Nonlinear Composites under Stress-Controlled Loadings
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada
OPTIMIZATION-BASED SAMPLING IN ENSEMBLE KALMAN FILTERING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Alexander Bibov, Heikki Haario, Antti Solonen, Johnathan M. Bardsley
Multiscale Modeling for Planar Lattice Microstructures with Structural Elements
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Ken Ooue, Isao Saiki, Kenjiro Terada, Akinori Nakajima
STRESS-BASED ATOMISTIC/CONTINUUM COUPLING: A NEW VARIANT OF THE QUASICONTINUUM APPROXIMATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 1
C. Makridakis, E. Suli, Christoph Ortner