Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015012623
pages 569-583

ROBUSTNESS OF WILKS' CONSERVATIVE ESTIMATE OF CONFIDENCE INTERVALS

Jan Peter Hessling
SP Technical Research Institute of Sweden, Measurement Technology, Box 857, SE-50115 Boras, Sweden
Jeffrey Uhlmann
University of Missouri−Columbia, Department of Computer Science, 201 EBW, Columbia, Missouri 65211, USA

SINOPSIS

The striking generality and simplicity of Wilks' method has made it popular for quantifying modeling uncertainty. A conservative estimate of the confidence interval is obtained from a very limited set of randomly drawn model sample values, with probability set by the assigned so-called stability. In contrast, the reproducibility of the estimated limits, or robustness, is beyond our control as it is strongly dependent on the probability distribution of model results. The inherent combination of random sampling and faithful estimation in Wilks' approach is here shown to often result in poor robustness. The estimated confidence interval is consequently not a well-defined measure of modeling uncertainty. To remedy this deficiency, adjustments of Wilks' approach as well as alternative novel, effective but less known approaches based on deterministic sampling are suggested. For illustration, the robustness of Wilks' estimate for uniform and normal model distributions are compared.


Articles with similar content:

Study of Impact of Data Sampling Division upon the Accuracy of Simulation by the GMDH Algorithms
Journal of Automation and Information Sciences, Vol.40, 2008, issue 3
Nina V. Kondrashova
Reconstruction of the Model of Probabilistic Dependences by Statistical Data. Tools and Algorithm
Journal of Automation and Information Sciences, Vol.41, 2009, issue 12
Alexander S. Balabanov
ASSESSING THE PERFORMANCE OF LEJA AND CLENSHAW-CURTIS COLLOCATION FOR COMPUTATIONAL ELECTROMAGNETICS WITH RANDOM INPUT DATA
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 1
Dimitrios Loukrezis, Ulrich Römer, Herbert De Gersem
ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 5
James L. Beck, Konstantin M. Zuev
A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J. H. Law