Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 4.911 Factor de Impacto de 5 años: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016012354
pages 1-17

GLOBAL SENSITIVITY ANALYSIS: AN EFFICIENT NUMERICAL METHOD FOR APPROXIMATING THE TOTAL SENSITIVITY INDEX

Matieyendou Lamboni
University of Guyane, Department DFRST, 2091 route de Baduel, 97346 Cayenne Cedex, French Guiana (present address); 228-UMR Espace-Dev, 275 route de Montabo, 97323 Cayenne Cedex, French Guiana (present address); EC-Joint Research Centre, Institute for Environment and Sustainability, Via Fermi 2749, 21027 Ispra, Italy

SINOPSIS

Variance-based sensitivity analysis and multivariate sensitivity analysis aim to apportion the variability of model output(s) into input factors and their interactions. Total sensitivity index (TSI) gives for each input its overall contribution, including the effects of its interactions with all the other inputs, in the variability of the model output(s). We investigate a numerical approximation of TSIs mainly based upon quadrature rules and quasi-Monte Carlo. The estimation of a TSI relies on the estimation of a total effect function (TEF), which allows for computing the TSI values by taking its variance. First, the paper derives the specific formula for the computation of the TEF, including the theoretical properties of the approximation, and second, it gives an overview of its application in many situations. Our approach gives the exact estimation of TSIs for a class of exact quadrature rules (especially for polynomial functions) and an interesting approximation for other functions. Numerical tests show the faster convergence rate of our approach and their usefulness in practice.


Articles with similar content:

GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 6
Youssef Marzouk, Xun Huan
AN OPTIMAL SAMPLING RULE FOR NONINTRUSIVE POLYNOMIAL CHAOS EXPANSIONS OF EXPENSIVE MODELS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 3
Michael Sinsbeck, Wolfgang Nowak
MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS-APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 1
Ville Kolehmainen, Jari P. Kaipio, Simon R. Arridge, Tanja Tarvainen
HYBRID LATTICE BOLTZMANN AND FINITE VOLUME METHODS FOR FLUID FLOW PROBLEMS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 3
Mo Yang, Zheng Li, Yuwen Zhang
SHAPLEY EFFECTS FOR SENSITIVITY ANALYSIS WITH CORRELATED INPUTS: COMPARISONS WITH SOBOL' INDICES, NUMERICAL ESTIMATION AND APPLICATIONS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 5
Bertrand Iooss, Clementine Prieur