Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 4.911 Factor de Impacto de 5 años: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i1.40
pages 49-76

ASSIMILATION OF COARSE-SCALEDATAUSINGTHE ENSEMBLE KALMAN FILTER

Santha Akella
The Johns Hopkins University, Baltimore, MD 21218, USA
A. Datta-Gupta
Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA
Yalchin Efendiev
Department of Mathematics and Institute for Scientific Computation (ISC), Texas A&M University, College Station, TX 77840, USA; Multiscale Model Reduction Laboratory, North-Eastern Federal University, Yakutsk, Russia, 677980

SINOPSIS

Reservoir data is usually scale dependent and exhibits multiscale features. In this paper we use the ensemble Kalman filter (EnKF) to integrate data at different spatial scales for estimating reservoir fine-scale characteristics. Relationships between the various scales is modeled via upscaling techniques. We propose two versions of the EnKF to assimilate the multiscale data, (i) where all the data are assimilated together and (ii) the data are assimilated sequentially in batches. Ensemble members obtained after assimilating one set of data are used as a prior to assimilate the next set of data. Both of these versions are easily implementable with any other upscaling which links the fine to the coarse scales. The numerical results with different methods are presented in a twin experiment setup using a two-dimensional, two-phase (oil and water) flow model. Results are shown with coarse-scale permeability and coarse-scale saturation data. They indicate that additional data provides better fine-scale estimates and fractional flow predictions. We observed that the two versions of the EnKF differed in their estimates when coarse-scale permeability is provided, whereas their results are similar when coarse-scale saturation is used. This behavior is thought to be due to the nonlinearity of the upscaling operator in the case of the former data. We also tested our procedures with various precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the coarse-scale data yielded improved estimates. With better coarse-scale modeling and inversion techniques as more data at multiple coarse scales is made available, the proposed modification to the EnKF could be relevant in future studies.


Articles with similar content:

A STOCHASTIC INVERSE PROBLEM FOR MULTISCALE MODELS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 3
N. Panda, Lindley Graham, Clint Dawson, Troy Butler, Donald Estep
LATTICE BOLTZMANN MODEL FOR UPSCALING OF FLOW IN HETEROGENEOUS POROUS MEDIA BASED ON DARCY'S LAW
Journal of Porous Media, Vol.22, 2019, issue 9
F. L. Liu, X. Jin, Moran Wang, M. Li, W. F. Lv, Q. Liu, G. Z. Liu
UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 1
Gabriel Guerra, Marta Mattoso, Eduardo Ogasawara, Jonas Furtado Dias, Renato Elias, Fernando A. Rochinha, Daniel de Oliveira, Alvaro L. G. A. Coutinho
Analytical and Numerical Solution for One-Dimensional Two-Phase Flow in Homogeneous Porous Medium
Journal of Porous Media, Vol.12, 2009, issue 12
Jiri Mikyska, Radek Fucik, Michal Benes, Tissa H. Illangasekare
GRID-BASED INVERSION OF PRESSURE TRANSIENT TEST DATA WITH STOCHASTIC GRADIENT TECHNIQUES
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Fikri Kuchuk, Richard Booth, Kirsty Morton, Mustafa Onur