Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 4.911 Factor de Impacto de 5 años: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i1.20
pages 19-33

ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA

Howard C. Elman
Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, USA
Christopher W. Miller
Department of Applied Mathematics and Scientific Computation, University of Maryland, USA
Eric T. Phipps
Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Raymond S. Tuminaro
Sandia National Laboratories, PO Box 969, MS 9159, Livermore, CA 94551, USA

SINOPSIS

We compare the performance of two methods, the stochastic Galerkin method and the stochastic collocation method, for solving partial differential equations (PDEs) with random data. The stochastic Galerkin method requires the solution of a single linear system that is several orders larger than linear systems associated with deterministic PDEs. The stochastic collocation method requires many solves of deterministic PDEs, which allows the use of existing software. However, the total number of degrees of freedom in the stochastic collocation method can be considerably larger than the number of degrees of freedom in the stochastic Galerkin system. We implement both methods using the Trilinos software package and we assess their cost and performance. The implementations in Trilinos are known to be efficient, which allows for a realistic assessment of the computational complexity of the methods. We also develop a cost model for both methods which allows us to examine asymptotic behavior.


Articles with similar content:

A PRIORI ERROR ANALYSIS OF STOCHASTIC GALERKIN PROJECTION SCHEMES FOR RANDOMLY PARAMETRIZED ORDINARY DIFFERENTIAL EQUATIONS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 4
Christophe Audouze , Prasanth B. Nair
POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Roland Pulch
FIBONACCI COLLOCATION METHOD TO SOLVE TWO-DIMENSIONAL NONLINEAR FRACTIONAL ORDER ADVECTION-REACTION DIFFUSION EQUATION
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 6
Subir Das, Rajeev, Kushal Dhar Dwivedi
Multiscale Discontinuous Galerkin and Operator-Splitting Methods for Modeling Subsurface Flow and Transport
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 1
Juergen Geiser, Shuyu Sun
A MULTI-FIDELITY STOCHASTIC COLLOCATION METHOD FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 3
Maziar Raissi, Padmanabhan Seshaiyer