Suscripción a Biblioteca: Guest
International Journal for Uncertainty Quantification

Publicado 6 números por año

ISSN Imprimir: 2152-5080

ISSN En Línea: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

RANDOM REGULARITY OF A NONLINEAR LANDAU DAMPING SOLUTION FOR THE VLASOV-POISSON EQUATIONS WITH RANDOM INPUTS

Volumen 9, Edición 2, 2019, pp. 123-142
DOI: 10.1615/Int.J.UncertaintyQuantification.2019026936
Get accessGet access

SINOPSIS

In this paper, we study the nonlinear Landau damping solution of the Vlasov-Poisson equations with random inputs from the initial data or equilibrium, for the solution studied by Hwang and Velázquez smoothly on the random input, if the long-time limit distribution function has the same smoothness, under some smallness assumptions. We also establish the decay of the higher-order derivatives of the solution in the random variable, with the same decay rate as its deterministic counterpart.

REFERENCIAS
  1. Landau, L.D., On the Vibration of the Electronic Plasma, J. Phys. USSR, 10(25):25–34, 1946.

  2. Degond, P., Spectral Theory of the Linearized Vlasov-Poisson Equation, Trans. Am. Math. Sci., 294(2):435–453, 1986.

  3. Glassey, R. and Schaeff J., Time Decay for Solutions to the Linearized Vlasov Equation, Transp. Theory Stat. Phys., 23(4):411–453, 1994.

  4. Caglioti, E. and Maffei, C., Time Asymptotics for Solutions of Vlasov-Poisson Equation in a Circle, J. Stat. Phys., 92(1):301– 323, 1998.

  5. Hwang, H.J. and Velazquez, J., On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem, Indiana Univ. Math. J., 58(6):2623–2660, 2009.

  6. Mouhot, C. and Villani, C., On Landau Damping, Acta Math., 207(1):29–201, 2011.

  7. Bedrossian, J., Masmoudi, N., and Mouhot, C., Landau Damping: Paraproducts and Gevrey Regularity, Ann. PDE, 2:4, 2016.

  8. Smith, R., Uncertainty Quantification: Theory, Implementation, and Applications, Philadelphia: SIAM, 2013.

  9. Babuska, I., Tempone, R., and Zouraris, G., Galerkin Finite Element Approximations of Stochastic Elliptic Diffitial Equations, SIAM J. Numer. Anal., 42(2):800–825, 2004.

  10. Nobile, F. and Tempone, R., Analysis and Implementation Issues for the Numerical Approximation of Parabolic Equations with Random Coefficients, Int. J. Numer. Methods. Eng., 80(6):979–1006, 2009.

  11. Motamed, M., Nobile, F., and Tempone, R., Stochastic Collocation Method for the Second Wave Equation with a Discontinuous Random Speed, Numer. Math., 123(3):493–536, 2013.

  12. Tang, T. and Zhou, T., Convergence Analysis for Stochastic Collocation Methods to Scalar Hyperbolic Equations with a Random Wave Speed, Commun. Comput. Phys., 8(1):226–248, 2010.

  13. Jin, S., Liu, J., and Ma, Z., Uniform Spectral Convergence of the Stochastic Galerkin Method for the Linear Transport Equations with Random Inputs in Diffusive Regime and a Micro-Macro Decomposition based Asymptotic Preserving Method, Res. Math. Sci., 4:15,2017.

  14. Li, Q. and Wang, L., Uniform Regularity for Linear Kinetic Equations with Random Input based on Hypocoercivity, SIAM/ASA J. Uncertainty Quantif., 5(1):1193–1219, 2018.

  15. Jin, S. and Zhu, Y., Hypocoercivity and Uniform Regularity for the Vlasov-Poisson-Fokker-Planck System with Uncertainty and Multiple Scales, SIAM J. Math. Anal., 50(2):1790–1816, 2018.

  16. Liu, L. and Jin, S., Hypocoercivity based Sensitivity Analysis and Spectral Convergence of the Stochastic Galerkin Approximation to Collisional Kinetic Equations with Multiple Scales and Random Inputs, Multiscale Model. Simul., 16(3):1085–1114, 2018.

  17. Shu, R. and Jin, S., Uniform Regularity in the Random Space and Spectral Accuracy of Thestochastic Galerkin Method for a Kinetic-Fluid Two-Phase Flow Model with Random Initial Inputs in the Light Particle Regime, ESAIM: M2AN, 52(5):1651– 1678, 2018.

  18. Shu, R. and Jin, S., A Study of Landau Damping with Random Initial Inputs, J. Differ. Eqs., 266(4):1922–1945, 2019.

  19. Shu, R. and Jin, S., Random Regularity of Landau Damping Solution of Mouhot and Villani with Random Inputs, in preparation.

  20. Xiu, D., Fast Numerical Methods for Stochastic Computations: A Review, Commun. Comput. Phys, 5(2):242–272, 2009.

  21. Xiu, D. and Karniadakis, G.E., The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput., 24(2):619–644, 2002.

CITADO POR
  1. Xiao Tianbai, Frank Martin, A stochastic kinetic scheme for multi-scale plasma transport with uncertainty quantification, Journal of Computational Physics, 432, 2021. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain