Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016016561
pages 127-140

UNCERTAINTY QUANTIFICATION TOWARDS FILTERING OPTIMIZATION IN SCENE MATCHING AIDED NAVIGATION SYSTEMS

Shengdi Zhang
Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha, Hunan, HN 731, People's Republic of China
Xiaojun Duan
Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha, Hunan, HN 731, People's Republic of China
Lijun Peng
Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha, Hunan, HN 731, People's Republic of China

SINOPSIS

There exist many uncertain sources for positioning process of scene matching aided navigation systems, and filter architecture and random parameters are considered mainly in this paper for the goal of trajectory optimization. In order to reduce the uncertainty of filter architecture, a practical scene matching optimization scheme is proposed, where fusion architecture and filtering parameters are both considered, in the circumstance of different sampling rates without transmission delay. The matching interval is determined by adjustment time of matching, matching points are settled from back to front, a cost function for the matching number is designed according to optimization criteria, and finally an appropriate matching number is determined by required mapping accuracy. The optimization scheme is validated by the simulation. On the other hand the filtering parameters are identified and validated by reducing parameter space in advance and local sensitivity analysis method. Simulation results illustrate that the systems are more sensitive for the measurement noise, which provides a theoretical basis for engineering applications.


Articles with similar content:

STRUCTURAL IDENTIFICATION OF A THERMAL PROCESS USING THE VOLTERRA MODEL
Heat Transfer Research, Vol.45, 2014, issue 5
Safa Chouchane, Kais Bouzrara, Hassani Messaoud
SEQUENTIAL SPARSITY ITERATIVE OPTIMAL DESIGN MODEL FOR CALIBRATION OF COMPLEX SYSTEMS WITH EPISTEMIC UNCERTAINTY
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 2
Chang Li, Weifeng Li, Xiaojun Duan
A HYBRID GENERALIZED POLYNOMIAL CHAOS METHOD FOR STOCHASTIC DYNAMICAL SYSTEMS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Michael Schick, Vincent Heuveline
APPLICATION OF GRANULATION OF FEATURE DESCRIPTIONS IN STRUCTURAL IMAGE RECOGNITION
Telecommunications and Radio Engineering, Vol.74, 2015, issue 6
Yu.A. Kulikov, V. A. Gorokhovatskiy, O.A. Kobylin
A SIMULATION-BASED UPSCALING TECHNIQUE FOR MULTISCALE MODELING OF ENGINEERING SYSTEMS UNDER UNCERTAINTY
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 6
Seung-Kyum Choi, Recep Gorguluarslan