Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016018673
pages 515-531

A NEW INVERSE METHOD FOR THE UNCERTAINTY QUANTIFICATION OF SPATIALLY VARYING RANDOM MATERIAL PROPERTIES

Gun Jin Yun
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea, 08826
Shen Shang
AZZ IWSI 2225 Skyland Court Norcross, Georgia 30071, USA

SINOPSIS

In this paper, a new inverse uncertainty quantification method was proposed to identify statistical parameters associated with spatially varying material properties and to reconstruct their heterogeneous distributions from limited experimental measurements. The proposed method parameterizes statistical models of random fields with analytic co-variance functions and spectral decomposition into Karhunen-Loeve random variables. The statistical model parameters are identified by an experimental-numerical inverse analysis method, which is expected to significantly reduce time and cost required for quantification of material uncertainties.


Articles with similar content:

STATISTICAL EXTRACTION OF PROCESS ZONES AND REPRESENTATIVE SUBSPACES IN FRACTURE OF RANDOM COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
S. P. A. Bordas, Timon Rabczuk, K. M. Schmidt, Pierre Kerfriden
A MIXED UNCERTAINTY QUANTIFICATION APPROACH USING EVIDENCE THEORY AND STOCHASTIC EXPANSIONS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Tyler Winter, Serhat Hosder, Harsheel Shah
POLYNOMIAL-CHAOS-BASED KRIGING
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 2
Joe Wiart, Bruno Sudret, Roland Schobi
ROBUSTNESS OF WILKS' CONSERVATIVE ESTIMATE OF CONFIDENCE INTERVALS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Jan Peter Hessling, Jeffrey Uhlmann
INVERSE STOCHASTIC HOMOGENIZATION ANALYSIS FOR A PARTICLE-REINFORCED COMPOSITE MATERIAL WITH THE MONTE CARLO SIMULATION
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
F. Ashida, Y. Shimizu, Sei-ichiro Sakata