Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014006914
pages 365-386

RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY

Loic Le Gratiet
University Paris Diderot 75205 Paris Cedex 13, CEA, DAM, DIF, F-91297 Arpajon, France
Josselin Garnier
Laboratoire de Probabilites et Modeles Aleatoires & Laboratoire Jacques-Louis Lions, Universite Paris Diderot, 75205 Paris Cedex 13, France

SINOPSIS

We consider in this paper the problem of building a fast-running approximation−also called surrogate model−of a complex computer code. The co-kriging based surrogate model is a promising tool to build such an approximation when the complex computer code can be run at different levels of accuracy. We present here an original approach to perform a multi-fidelity co-kriging model which is based on a recursive formulation. We prove that the predictive mean and the variance of the presented approach are identical to the ones of the original co-kriging model. However, our new approach allows to obtain original results. First, closed-form formulas for the universal co-kriging predictive mean and variance are given. Second, a fast cross-validation procedure for the multi-fidelity co-kriging model is introduced. Finally, the proposed approach has a reduced computational complexity compared to the previous one. The multi-fidelity model is successfully applied to emulate a hydrodynamic simulator.


Articles with similar content:

COMPARISON OF LINEARIZATION AND GRAPH CLUSTERING METHODS FOR UNCERTAINTY QUANTIFICATION OF LARGE SCALE DYNAMICAL SYSTEMS
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 1
Abani K. Patra, Puneet Singla, Rahul Rai, Arpan Mukherjee, Tarunraj Singh
ADAPTIVE SELECTION OF SAMPLING POINTS FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 4
Casper Rutjes, Enrico Camporeale, Ashutosh Agnihotri
A NEW APPROACH TO SIMULATE THE FLUID NETWORK OF UNSTEADY FLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Hongwei Wu, Zhi Tao, Shujun Han, Shuiting Ding
Improved Semi-Lagrangian Stabilizing Correction Scheme for Shallow Water Equations
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 3
Andrei Bourchtein, Ludmila Bourchtein
An Improved Capillary Bundle Model by Using Tortuosity and Parameters Extracted from Pore Network Model
International Heat Transfer Conference 15, Vol.40, 2014, issue
Yu Liu, Yongchen Song, Lingyu Chen, Xinhuan Zhou, Lanlan Jiang, Meiheriayi Mutailipu