Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 4.911 Factor de Impacto de 5 años: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014008153
pages 151-170

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY-INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 1: BAYESIAN INFERENCE OF FIXED MODEL FORMS

Maher Salloum
Sandia National Laboratories, 7011 East Avenue, MS 9158, Livermore, California 94550, USA
Jeremy A. Templeton
Sandia National Laboratories, 7011 East Avenue, MS 9409, Livermore, California 94550, USA

SINOPSIS

Uncertainty quantification techniques have the potential to play an important role in constructing constitutive relationships applicable to nanoscale physics. At these small scales, deviations from laws appropriate at the macroscale arise due to insufficient scale separation between the atomic and continuum length scales, as well as fluctuations due to thermal processes. In this work, we consider the problem of inferring the coefficients of an assumed constitutive model form using atomistic information and propagation of the associated uncertainty. A nanoscale heat transfer problem is taken as the model, and we use a polynomial chaos expansion to represent the thermal conductivity with a linear temperature dependence. A Bayesian inference method is developed to extract the coefficients in this expansion from molecular dynamics (MD) samples at prescribed temperatures. Importantly, the atomistic data are incompatible with the continuum model because of the finite probability of heat flowing in the opposite direction of the temperature gradient; we present a method to account for this in the model. The fidelity and uncertainty in these techniques are then examined. Validation is provided by comparing a continuum Fourier model against a larger all MD simulation representing the true solution.


Articles with similar content:

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 2: GENERALIZED CONTINUUM MODELS BASED ON GAUSSIAN PROCESSES
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Jeremy A. Templeton, Maher Salloum
ROLE OF FLUCTUATIONAL ELECTRODYNAMICS IN NEAR-FIELD RADIATIVE HEAT TRANSFER
ICHMT DIGITAL LIBRARY ONLINE, Vol.17, 2007, issue
Mathieu Francoeur, M. Pinar Menguc
PROPAGATION OF UNCERTAINTY BY SAMPLING ON CONFIDENCE BOUNDARIES
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 5
Jan Peter Hessling, Thomas Svensson
Boltzmann Transport Equation-based Thermal Modeling Approaches for Microelectronics
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Jayathi Y. Murthy, Sreekant V.J. Narumanchi, Cristina H. Amon
Nonlinear and Kinetic Effects in the Propagation of an Intense Electromagnetic Pulse Through the Atmosphere
Telecommunications and Radio Engineering, Vol.54, 2000, issue 4
V. A. Terekhin, A. V. Soldatov, V. T. Tikhonchuk, M. D. Kamchibekov, A. I. Golubev, T. G. Sysoeva