Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2017019428
pages 189-205

A FULLY ADAPTIVE INTERPOLATED STOCHASTIC SAMPLING METHOD FOR LINEAR RANDOM PDES

Felix Anker
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Christian Bayer
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Martin Eigel
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Johannes Neumann
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
John Schoenmakers
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany

SINOPSIS

A numerical method for the fully adaptive sampling and interpolation of linear PDEs with random data is presented. It is based on the idea that the solution of the PDE with stochastic data can be represented as conditional expectation of a functional of a corresponding stochastic differential equation (SDE). The spatial domain is decomposed by a nonuniform grid and a classical Euler scheme is employed to approximately solve the SDE at grid vertices. Interpolation with a conforming finite element basis is employed to reconstruct a global solution of the problem. An a posteriori error estimator is introduced which provides a measure of the different error contributions. This facilitates the formulation of an adaptive algorithm to control the overall error by either reducing the stochastic error by locally evaluating more samples, or the approximation error by locally refining the underlying mesh. Numerical examples illustrate the performance of the presented novel method.


Articles with similar content:

A COMPARATIVE STUDY IN OPTICAL TOMOGRAPHY WITH REGULARIZATION TOOLS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2013, issue
Olivier F. Balima
A WEIGHT-BOUNDED IMPORTANCE SAMPLING METHOD FOR VARIANCE REDUCTION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Linjun Lu, Tenchao Yu, Jinglai Li
Adaptive Bridging of Scales in Continuum Modeling Based on Error Control
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 4
Kenneth Runesson, Fredrik Larsson
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt
A VARIANT OF THE S-VERSION OF THE FINITE ELEMENT METHOD FOR CONCURRENT MULTISCALE COUPLING
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Hachmi Ben Dhia, Wei Sun, Jacob Fish