Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2017019428
pages 189-205

A FULLY ADAPTIVE INTERPOLATED STOCHASTIC SAMPLING METHOD FOR LINEAR RANDOM PDES

Felix Anker
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Christian Bayer
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Martin Eigel
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Johannes Neumann
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
John Schoenmakers
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany

SINOPSIS

A numerical method for the fully adaptive sampling and interpolation of linear PDEs with random data is presented. It is based on the idea that the solution of the PDE with stochastic data can be represented as conditional expectation of a functional of a corresponding stochastic differential equation (SDE). The spatial domain is decomposed by a nonuniform grid and a classical Euler scheme is employed to approximately solve the SDE at grid vertices. Interpolation with a conforming finite element basis is employed to reconstruct a global solution of the problem. An a posteriori error estimator is introduced which provides a measure of the different error contributions. This facilitates the formulation of an adaptive algorithm to control the overall error by either reducing the stochastic error by locally evaluating more samples, or the approximation error by locally refining the underlying mesh. Numerical examples illustrate the performance of the presented novel method.


Articles with similar content:

HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Edmondo Minisci, Marco Cisternino, Martin Kubicek
ADAPTIVE SELECTION OF SAMPLING POINTS FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 4
Casper Rutjes, Enrico Camporeale, Ashutosh Agnihotri
PRIOR AND POSTERIOR ROBUST STOCHASTIC PREDICTIONS FOR DYNAMICAL SYSTEMS USING PROBABILITY LOGIC
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Alexandros Taflanidis, James L. Beck
A COMPARISON BETWEEN GLOBAL AND LOCALIZED RBF MESHLESS METHODS FOR PROBLEMS INVOLVING CONVECTIVE HEAT TRANSFER
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Jiajia Waters, Darrell W. Pepper
VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang