Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Enhanced Heat Transfer
Factor de Impacto: 0.562 Factor de Impacto de 5 años: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimir: 1065-5131
ISSN En Línea: 1026-5511

Volumen 27, 2020 Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v8.i1.40
pages 41-53

Determination of Optimal Row Spacing for a Staggered Cross-Pin Array in a Turbine Blade Cooling Passage

E. E. Donahoo
The Pennsylvania State University, University Park, PA 16802, USA
Cengiz Camci
Turbomachinery Aero-Heat Transfer Laboratory, Department of Aerospace Engineering, The Pennsylvania State University, USA
Anil K. Kulkarni
Mechanical Engineering Department, Pennsylvania State University, State College, Pennsylvania 16801, USA
A. D. Belegundu
The Pennsylvania State University, University Park, PA 16802, USA


Crosspin configurations are of interest in turbine blade design due to the enhanced cooling they provide. In addition, crosspins which extend from the walls of hollow blades provide structural integrity and stiffness to the blade itself. Numerous crosspin shapes and arrangements are possible, but only certain combinations offer high heat transfer capability while maintaining low overall total pressure loss. This study presents results from 2-D numerical simulations of coolant airflow through a turbine blade internal cooling passage. The simulations model viscous flow and heat transfer over circular pins in a staggered arrangement of varying pin spacing. Preliminary analysis over a wide range of Reynolds numbers indicates existence of an optimal spacing for which maximum heat transfer and minimum total pressure drop occurs. Pareto plots, which graphically identify the optimum data points with multiple optimization parameters, were obtained for a range of Reynolds numbers and streamwise spacings in a staggered crosspin arrangement. There is a steady increase in crosspin heat transfer up to a certain number of rows, then a gradual decrease in heat transfer in subsequent rows. Knowledge obtained from such findings can be used to determine the number of crosspins used, as well as the ultimate pin arrangement.