Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Enhanced Heat Transfer
Factor de Impacto: 1.406 Factor de Impacto de 5 años: 1.075 SJR: 0.287 SNIP: 0.653 CiteScore™: 1.2

ISSN Imprimir: 1065-5131
ISSN En Línea: 1563-5074

Volumes:
Volumen 27, 2020 Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2015013956
pages 147-175

COMPUTATIONAL INVESTIGATION OF DIMPLE EFFECTS ON HEAT TRANSFER AND FRICTION FACTOR IN A LAMILLOY COOLING STRUCTURE

Lei Luo
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
Chenglong Wang
Division of Heat Transfer, Department of Energy Sciences, Lund University, Box 118, Lund, SE-2 2 100, Sweden
Lei Wang
Division of Heat Transfer, Department of Energy Sciences, Lund University, Box 118, Lund, SE-2 2 100, Sweden
Bengt Sunden
Division of Heat Transfer, Department of Energy Sciences, Lund University, P.O. Box 118, SE-22100, Lund, Sweden
Songtao Wang
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China

SINOPSIS

Good heat transfer performance with a moderate pressure drop penalty contributes to the gas turbine engine lifetime and guaranteeing engine efficiency. In this study, the dimple effects for a Lamilloy® (Allison Advanced Development Corporation, Indiana, IN, USA) cooling structure on the heat transfer and friction factor are numerically investigated. The dimple is positioned directly under the jet impingement nozzle. The Reynolds number ranges from 10,000 to 70,000, the dimple normalized depth is between 0 and 0.3, and the dimple normalized diameter varies from 1 to 2.5. The results for the flow field, target surface heat transfer, pin fin surface heat transfer, friction factor, and solid domain outer-wall temperature are included. For comparison, a Lamilloy cooling structure without the dimple is considered as the baseline. The results show that the dimple significantly increases the local heat transfer due to flow reattachment and recirculation. With an increase in the normalized dimple depth, the heat transfer on the target surface is first augmented due to the increase of flow reattachment and recirculation, and then it is decreased due to the large toroidal vortex. However, an increase in the dimple depth results in reduction of the pin fin surface heat transfer. As the dimple diameter increases, the target surface heat transfer is also first augmented due to the increase in the flow reattachment and recirculation, and then it is decreased as the flow separation increases. The thermal performance indicates that the intensity of the heat transfer enhancement depends on the depth and diameter of the dimple.


Articles with similar content:

EFFECTS OF PIN FIN CONFIGURATIONS ON HEAT TRANSFER AND FRICTION FACTOR IN AN IMPROVED LAMILLOY COOLING STRUCTURE
Heat Transfer Research, Vol.48, 2017, issue 7
Lei Wang, Bengt Sunden, Lei Luo, Songtao Wang, Chenglong Wang
NUMERICAL ANALYSIS OF THE THERMAL PERFORMANCE OF A NOVEL DOUBLE-LAYERED HEAT SINK WITH STAGGERED PIN FINS
Heat Transfer Research, Vol.50, 2019, issue 8
Tianqi Zhai, Shengnan Shen, Mingliang Xu, Hui Li, Guoqing Zhang, Yongbo Xue, Yicang Huang
INFLUENCE OF HEIGHT TO DIAMETER RATIO ON IMPINGEMENT HEAT TRANSFER ON EFFUSED CONCAVE SURFACE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Bhamidi V. S. S. S. Prasad, M. Ashok Kumar
COMPUTATIONAL INVESTIGATION OF CURVATURE EFFECTS ON JET IMPINGEMENT HEAT TRANSFER AT INTERNALLY COOLED TURBINE VANE LEADING EDGE REGIONS
Heat Transfer Research, Vol.51, 2020, issue 4
Dandan Qiu, Bengt Sunden, Lei Luo, Songtao Wang, Yifeng Zhang, Xinghong Zhang
A Numerical Study on Fluid Flow and Heat Transfer Performance of Internally Roughened Tubes with Dimples
Journal of Enhanced Heat Transfer, Vol.16, 2009, issue 3
R. Li, Yuan G. Lei, Y. B. Tao, Ya-Ling He, P. Chu