Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v35.i6.10
pages 447-553

INITIALIZATION, CONCEPTUALIZATION, AND APPLICATION IN THE GENERALIZED (FRACTIONAL) CALCULUS

Carl F. Lorenzo
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, Ohio, USA
Tom T. Hartley
Department of Electrical and Computer Engineering, University of Akron, USA

SINOPSIS

This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.


Articles with similar content:

Optimal Stabilization of the Solutions of a Parabolic Boundary-value Problem Using Bounded Lumped Control
Journal of Automation and Information Sciences, Vol.31, 1999, issue 12
Vladimir E. Kapustyan
Discrete Optimal Control of Descriptor Systems with Variable Parameters
Journal of Automation and Information Sciences, Vol.43, 2011, issue 5
Larisa A. Vlasenko, Mikhail F. Bondarenko, Anatoliy G. Rutkas
On Zhukovsky's Vortical Theory for Describing Flow Past a Propeller
International Journal of Fluid Mechanics Research, Vol.26, 1999, issue 4
E. S. Vozhdayev, V. S. Vozhdayev
INTEGRAL METHOD OF BOUNDARY CHARACTERISTICS: THE DIRICHLET CONDITION. PRINCIPLES
Heat Transfer Research, Vol.47, 2016, issue 11
Valery A. Kot
Elliptic System Control at the Presence of Main Heterogeneous Conjugation Conditions
Journal of Automation and Information Sciences, Vol.35, 2003, issue 11
Ivan V. Sergienko, Vasiliy S. Deineka