Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumes:
Volumen 48, 2020 Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2020033670
pages 85-93

Microwave-Induced Thermal Lesion Detection via Ultrasonic Scatterer Center Frequency Analysis with Autoregressive Cepstrum

Lei Sheng
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
Wei Rao
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, PR China
Zhuhuang Zhou
College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
Shuicai Wu
College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
Guolin Ma
Department of Radiology, China-Japan Friendship Hospital, Beijing, China

SINOPSIS

We proposed a new method for microwave-induced thermal lesion detection using the autoregressive spectrum analysis of ultrasonic backscattered signals in this paper. Eighteen cases of microwave ablation experiments and twenty cases of water bath heating experiments were conducted. Ultrasonic radiofrequency data of normal and coagulated porcine liver tissues were collected through these two experiments. Then, autoregressive spectrum analysis was performed; the mean frequency of the dominant peak in the autoregressive spectrum was computed based on water bath experiments; and a method for recognizing normal and solidified tissues was obtained by comparing the difference of the dominant peak in the autoregressive spectrum. Two bandpass finite impulse response filters, whose passbands corresponded respectively to the dominant peak in the autoregressive spectrum of normal and coagulated tissues, were used to compute the power spectral integration for the microwave-induced experiments. Microwave-induced thermal lesions were detected based on the differences between the power spectral integrations from the two filters. Compared to the caliper-measured area, the power spectral integration detected area had an error of (10.25 ± 3.59). Experimental results indicated that the proposed method may be used in preliminary detection of microwave-induced thermal lesions.

REFERENCIAS

  1. Lubner MG, Brace CL, Hinshaw JL, Lee FT. Microwave tumor ablation: Mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21:S192-203. .

  2. Liang P, Wang Y, Yu XL, Dong B. Malignant liver tumors: Treatment with percutaneous microwave ablation-complications among cohort of 1136 patients. Radiology. 2009;251:933-40. .

  3. Garrean S, Hering J, Saied A, Hoopes PJ, Helton WS, Ryan TP, Espat NJ. Ultrasound monitoring of a novel microwave ablation (MWA) device in porcine liver: Lessons learned and phenomena observed on ablative effects near major intrahepatic vessels. J Gastrointest Surg. 2009;13:334-40. .

  4. Pilatou MC, Stewart EA, Maier SE, Fennessy FM, Hynynen K, Tempany CMC, McDannold N. MRI-based thermal dosimetry and diffusion-weighted imaging of MRI-guided focused ultrasound thermal ablation of uterine fibroids. J Magn Reson Imaging. 2009;29:404-11. .

  5. Pandeya GD, Greuter MJW, Schmidt B, Flohr T, Oudkerk M. Assessment of thermal sensitivity of CT during heating of liver: An ex vivo study. Br J Radiol. 2012;85:661-5. .

  6. DeWall RJ, Varghese T, Brace CL. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography. Med Phys. 2012;39:6692-700. .

  7. Daoud MI, Mousavi P, Imani F, Rohling R, Abolmaesumi P. Tissue classification using ultrasound-induced variations in acoustic backscattering features. IEEE Trans Biomed Eng. 2013;60:310-20. .

  8. Techavipoo U, Varghese T, Chen Q, Stiles TA, Zagzebski JA, Frank GR. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. J Acoust Soc Am. 2004;115:2859-65. .

  9. Dongen KWAV, Verweij MD. A feasibility study for non-invasive thermometry using non-linear ultrasound. Int J Hyperther. 2011;27:612-24. .

  10. Arthur RM, Basu D, Guo Y, Trobaugh JW, Moros EG. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:1724-33. .

  11. Tsui PH, Shu YC, Chen WS, Liu HL, Hsiao IT, Chien YT. Ultrasound temperature estimation based on probability variation of backscatter data. Med Phys. 2012; 39:2369-85. .

  12. Yang C, Zhu H, Wu S, Bai Y, Gao H. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation. J Ultras Med. 2010;29:1787-99. .

  13. Lai CY, Kruse DE, Caskey CF, Stephens DN, Sutcliffe PL, Ferrara KW, Noninvasive thermometry assisted by a dual-function ultrasound transducer for mild hyper-thermia. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:2671-84. .

  14. Liu HL, Li ML, Shih TC, Huang SM, Lu IY, Lin DY, Lin SM, Ju KC. Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy. Ultrasound Med Biol. 2009;35:1647-61. .

  15. Brand S, Weiss EC, Lemor RM, Kolios MC. High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med Biol. 2008;34:1396-407. .

  16. Sheng L, Wang G, Li F, Luo J, Liu J. Ultrasound signal wavelet analysis to quantify the microstructures of normal and frozen tissues in vitro. Cryobiology. 2014;68(1):29-34. .

  17. Zhang S, Zhou F, Wan M, Wei M, Fu Q, Wang X, Wang S. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions. J Acoust Soc Am. 2012;131:4836-44. .

  18. Thittai AK, Galaz B, Ophir J. Visualization of HIFU-induced lesion boundaries by axial-shear strain elastography: A feasibility study. Ultrasound Med Biol. 2011;37:426-33. .

  19. Zhang D, Zhang S, Wan M, Wang S. A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection. Ultrasonics. 2011;51:857-69. .

  20. Mast TD, Pucke DP, BTech SE, Bowlus WJ, Rudich SM. Ultrasound monitoring of in vitro radio frequency ablation by echo decorrelation imaging. J Ultras Med. 2008;27(12):1685-97. .

  21. Salgaonkar VA, Datta S, Holland CK, Mast TD. Passive cavitation imaging with ultrasound arrays. J Acoust Soc Am. 2009;126:3071-83. .

  22. Jensen CR, Ritchie RW, Gyongy M, Collin JR. Spatio-temporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping. Radiology. 2012;262(1):252-61. .

  23. Amini AN, Ebbini ES, Georgiou TT. Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques. IEEE Trans Biomed Eng. 2005;52:221-8. .

  24. Yan B, Zuo H, Wang R. Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum. Ultrasonics. 2006;44:211-5. .

  25. Kay SM. Modern spectral estimation - theory and application. Upper Saddle River: Prentice Hall; 1998. .

  26. Girault JM, Ossant F, Ouahabi A. Time-varying autore-gressive spectral estimation for ultrasound attenuation in tissue characterization. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45:650-9. .

  27. Proakis JG. Digital signal processing - principles, algorithms, and applications. 4th ed. Upper Saddle River: Prentice Hall; 2007. .


Articles with similar content:

Predictors of Left Ventricular Myocardial Structural Remodeling in Patients with Atrial Fibrillation
International Journal of Physiology and Pathophysiology, Vol.9, 2018, issue 3
E. Levchenko, Alexey Goryachyi, Anatoliy I. Gozhenko, Yuryi Karpenko
DUAL-BAND MAGNETO-ELECTRIC DIPOLE ANTENNA FOR 5G/WLAN APPLICATIONS
Telecommunications and Radio Engineering, Vol.78, 2019, issue 20
P. Jyothirlatha, P. Seth, Neetu
NOISE OF OPEN AND SEMI-CLOSED BILEAFLET PROSTHETIC MITRAL VALVE
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 4
A. Redaelli, V. A. Voskoboinick, S. Siryk, O. Chertov, V. Stepanovitch, G. B. Fiore, A. V. Voskoboinick, F. Lucherini
Natural Convection around a Pulsating Line Heat Source
International Heat Transfer Conference 15, Vol.32, 2014, issue
Yann Fraigneau, Gérard Defresne, Marie-Christine Duluc, Mojtaba Jarrahi
PHASE FUNCTION ESTIMATION IN NATURAL WATERS USING DISCRETE ORDINATES METHOD AND MAXIMUM ENTROPY PRINCIPLE
Hybrid Methods in Engineering, Vol.2, 2000, issue 4
J. C. R. Claeyssen, E. S. Chalhoub, Haroldo F. de Campos Velho, Fernando Manuel Ramos