Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2012005619
pages 561-588

NUMERICAL STUDY OF THREE-DIMENSIONAL CONJUGATE HEAT TRANSFER IN LIQUID MINI-SCALE HEAT SINK

Mohamed Khamis Mansour
Department of Mechanical Engineering, Faculty of Engineering, Alexandria University

SINOPSIS

This paper presents a numerical study of the effect of the substrate material and liquid cooling medium on the heat transfer characteristics for three-dimensional conjugate heat transfer problem of laminar flow through a circular minichannel. A uniform heat flux of 100 kW/m2 is applied at the bottom-side of the substrate while the topside surface is considered adiabatic. Three different materials of the substrate have been adopted: copper (ks = 398 W/m·K), silicon (ks = 189 W/m·K), and stainless steel (ks = 15.9 W/m·K). Two different coolant liquids have also been proposed − water and mercury. The thermal characteristics of the conjugate heat transfer problem are represented by the local Nusselt (Nu) number, local bottom-side surface temperature of the channel, local heat flux, and local temperature difference between the solid and fluid domains. The effect of inlet coolant velocity is investigated with two different inlet velocities of 0.1 m/s and 0.05 m/s. The study shows that the thermal characteristics of the minichannel using water as a coolant medium with the three different substrate materials are in contradiction with those of the minichannel using mercury. The contradiction is generated as a result of the competitive effects of axial fluid conduction, and axial wall conduction as well as the competitive effects of the radial and circumferential heat diffusion in the fluid domain. The theoretical model has been verified by comparing the predicated results with those obtained from the available analytical and experimental data with maximum deviation of 6.7%. The study is considered as the benchmark and helpful guidelines in the design of small-scale circular channels which are used for electronic cooling systems.


Articles with similar content:

CFD MODEL OF AN AUTOMOTIVE CONDENSER AND ITS PERFORMANCE STUDIES UNDER RESTRICTED AIRFLOW CONDITION
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Thakor Vatsal, Santanu Prasad Datta, Vikas Pulinkuzhi
THERMOHYDRAULIC CHARACTERISTICS OF MICROCHANNEL HEAT SINKS COMBINED WITH RIBS AND CAVITIES: EFFECTS OF GEOMETRIC PARAMETERS AND HEAT FLUX
Heat Transfer Research, Vol.50, 2019, issue 1
Yuxiang Hong, Si-Min Huang, Wei-Biao Ye, Hong-Ju Guo, Cong Li
COUPLED EFFECTS OF CONVECTION AND CONDUCTION ON HEAT TRANSFER IN SOLID-LIQUID TWO-PHASE MEDIA DENSELY LADEN WITH FINITE-SIZED PARTICLES
International Heat Transfer Conference 16, Vol.8, 2018, issue
Shintaro Takeuchi, Jingchen Gu, Takeo Kajishima
CONJUGATE HEAT TRANSFER IN A U-SHAPED CHANNEL WITH TWO RIGHT ANGLE TURNS
International Heat Transfer Conference 9, Vol.3, 1990, issue
N. K. Anand , W. R. Laster, J. M. Choi
CONJUGATED HEAT TRANSFER IN MICROCHANNEL INCLUDING RAREFACTION AND VISCOUS DISSIPATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Lyes Bordja, Rachid Bessaih, Yassine Kabar, Mourad Rebay