Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 1.199 Factor de Impacto de 5 años: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016014588
pages 811-826

MASS BALANCE IN LATTICE BOLTZMANN METHOD WITH DIRICHLET VELOCITY BOUNDARY CONDITION

Zheng Li
College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
mo yang
university of shanghai for science and technology
Ya-Ling He
Key Laboratory of Thermo-fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Yuwen Zhang
University of Missouri, Columbia, MO 65201, USA

SINOPSIS

Many different methods can be used to treat open boundary conditions in the lattice Boltzmann method. The Zou–He method, finite difference velocity gradient method, and regularized method are reviewed and compared for the Dirichlet velocity condition for Poiseuille flow with different Reynolds numbers. Using the same convergence criterion, all the numerical procedures are carried on until steady states are reached. The obtained velocities and pressures are checked and compared with analytical solutions and mass balances for different methods. The results indicate that all the numerical data agreed well with the analytical solutions and the Zou–He method results satisfy the mass balance better than the others.


Articles with similar content:

Mass Balance in Velocity Dirichlet Boundary Conditions for Lattice Boltzmann Method
First Thermal and Fluids Engineering Summer Conference, Vol.4, 2015, issue
Ya-Ling He, Zheng Li, mo yang, Yuwen Zhang
Some Issues Related to the Use of Immersed Boundary Methods to Represent Square Obstacles
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 6
Bendiks Jan Boersma, M.B.J.M. Pourquie, Wim-Paul Breugem
A COMPARISON OF MOMENTUM, EULERIAN FRACTIONS AND δ-APPROXIMATION METHODS FOR MODELLING OF TWO-PHASE TURBULENT FLOWS WITH PHASE TRANSITIONS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Gennady A. Philippov, Artur R. Avetissian
EFFECT OF DRAG MODELING ON THE PREDICTION OF CRITICAL REGIME TRANSITIONS IN AGITATED GAS-LIQUID REACTORS WITH BUBBLE SIZE DISTRIBUTION MODELING
Multiphase Science and Technology, Vol.21, 2009, issue 1-2
Nicola Mancini, Daniele L. Marchisio, Miriam Petitti, Marco Vanni, Giancarlo Baldi, Fabrizio Podenzani
A NOVEL METHOD FOR THE COMPUTATION OF CONJUGATE HEAT TRANSFER WITH COUPLED SOLVERS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Rene Van den Braembussche, Tom Verstraete