Suscripción a Biblioteca: Guest
Heat Transfer Research

Publicado 18 números por año

ISSN Imprimir: 1064-2285

ISSN En Línea: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

Heat and Mass Transfer in a Boundary Layer in Evaporation and Combustion of Ethanol in a Turbulized Air Stream

Volumen 32, Edición 7&8, 2001, 6 pages
DOI: 10.1615/HeatTransRes.v32.i7-8.60
Get accessGet access

SINOPSIS

The influence of the dynamic properties of external flow on mass transfer in a boundary layer was investigated experimentally. The air stream turbulence was changed from 1% to 26% with the aid of lattices. The edges of height up to 15 mm were installed at the beginning of the boundary layer. The influence of viscosity was evaluated from comparison of experimental data for cases with combustion and without it. It is revealed that the extremes of mass transfer parameters exist for certain combination of the main stream turbulence level and the height of the edge. Without combustion it is a maximum of evaporation rate. With combustion - the flame breakdown main stream velocity maxima, and also it is the minimum of burning rate. In both cases the multiple changes of mass transfer intensity are noted. The reasons of their appearance are analyzed.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain