Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v32.i1-3.150
7 pages

A Table for Heat Transfer Coefficients in the Postcritical Region in the Case of Water Flow in a Tube (The Version of the Year 1997)

A. D. Efanov
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, 1 Bondarenko Sq., 249033, Obninsk, Russia
P. L. Kirillov
State Scientific Center of Russian Federation−Institute for Physics & Power Engineering, 249033 Obninsk, Kaluga Region, Russian Federation
I. P. Smogalev
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute Obninsk, Russia
A. A. Ivashkevich
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute Obninsk, Russia
V. N. Vinogradov
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute Obninsk, Russia
V. V. Sergeev
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute Obninsk, Russia

SINOPSIS

The 1997-year version of the look-up table of the heat transfer coefficient values in the postcritical region in forced flow of water in uniformly heated tubes is presented for the following range of the parameters; pressure 4−20 MPa, mass velocity 250−2000 kg/(m2·sec), relative enthalpy (vapor content) −0.2−2.2, heat flux 0.2−1 MW/m2, diameter of a tube 10 mm.


Articles with similar content:

3.5 Experimental Study of CHF of a Square-arranged Nine-Rod Cluster
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1980, issue
Gong-Xin Luo, Chong-Miao Shi, Peng-Fei Wang
INTEGRATED INVESTIGATION INTO HYDRODYNAMIC CHARACTERISTICS OF ANNULAR-DISPERSED STEAM-LIQUID FLOWS
International Heat Transfer Conference 6, Vol.1, 1978, issue
V. E. Nikolayev, V. I. Subbotin, V. I. Milashenko, D. N. Sorokin, Bulat I. Nigmatulin
EVAPORATIVE HEAT TRANSFER IN HORIZONTAL TUBES WITH STREP-TYPE INSERTS USING REFRIGERANT-600A
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Kuen-Jang Jang , Shou-Shing Hsieh, Yao-Chun Tsai
AN EXPERIMENTAL STUDY OF POST-CHF HEAT TRANSFER IN A 3×3 ROD BUNDLE
Multiphase Science and Technology, Vol.7, 1993, issue 1-4
Kemal Tuzla, John C. Chen, C. Unal
Film-Boiling Heat Transfer of Liquid Nitrogen and Hydrogen in Tubes at Large Liquid Subcoolings
Heat Transfer Research, Vol.34, 2003, issue 5&6
I. V. Antyukhov, V. P. Firsov, Guenrikh A. Dreitser, A. A. Kurilenko