Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017017295
pages 1127-1138

MATHEMATICAL MODELING OF HEAT TRANSFER PROBLEMS FOR THIN PLATES WITH TEMPERATURE-DEPENDENT CONDUCTIVITY

Rogério Martins Saldanha da Gama
Mechanical Engineering Graduate Program (FEN), Rio de Janeiro State University, Rua São Francisco Xavier 524, 20550-013, Rio de Janeiro, Brazil
Felipe Bastos de Freitas Rachid
Mechanical Engineering Graduate Program (TEM-PGMEC), Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240, Niterói, RJ, Brazil
Maria Laura Martins-Costa
Universidade Federal Fluminense

SINOPSIS

In this paper, the steady-state heat transfer phenomenon in a flat plate with temperature-dependent thermal conductivity is considered. The plate thickness is small enough in order to allow a two-dimensional description involving only the mean value of temperature over the plate thickness. A nonuniform, but known, internal heat supply and a convective heat exchange between the plate and the environment according to Newton's law of cooling are assumed. The resulting mathematical description consists of a nonlinear partial differential equation subjected to a Neumann boundary condition. The thermal conductivity is assumed to be a piecewise constant function of the temperature, and the Kirchhoff transformation is employed for constructing a new mathematical approach with an equivalent minimum principle. Proofs of existence and uniqueness of the solution are presented.