Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 1.199 Factor de Impacto de 5 años: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2012005138
pages 545-572

LATTICE BOLTZMANN METHOD FOR SIMULATING CONJUGATE HEAT TRANSFER FROM AN OBSTACLE MOUNTED IN A PARALLEL-PLATE CHANNEL WITH THE USE OF THREE DIFFERENT HEAT INPUT METHODS

Gholamreza Imani
Persian Gulf University
Mehdi Maerefat
Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
Kamel Hooman
Queensland Geothermal Energy Centre of Excellence, School of Mechanical and Mining Engineering University of Queensland, Brisbane, Queensland, AU
Mehdi Seddiq
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, 14115-143, Iran

SINOPSIS

In the present work, investigation of conjugate cooling of an obstacle mounted in a parallel-plate channel is carried out with the aid of the lattice Boltzmann simulation of a laminar incompressible fluid flow and heat transfer. The aim is to develop the lattice Boltzmann conjugate heat transfer formulation, based on on-lattice scheme, at the solid−fluid interfaces for incompressible flows by conducting studies of various cases ,including methods of heating different obstacles. In this way, the effects of the pertinent parameters such as the Reynolds number and solid-to-fluid thermal conductivity ratios on the local Nusselt number around the obstacle periphery are investigated. The results of the present study are compared with those obtained by conventional numerical methods, and good agreement is observed.


Articles with similar content:

Free Convection in a Vertical Duct: Numerical Study
Heat Transfer Research, Vol.42, 2011, issue 6
Mohamed Si-Ameur, A. M. Chehhat , Fatima Zohra Bakhti
HEAT TRANSFER ENHANCEMENT IN AN ASYMMETRICALLY HEATED CHANNEL PARTIALLY FILLED WITH FIBROUS POROUS MEDIA−A LBM APPROACH
Journal of Porous Media, Vol.18, 2015, issue 12
Abbas Abbassi, Alireza Salehi, Mohammad Abbaszadeh
STUDY OF CONVECTIVE HEAT TRANSFER IN A SQUARE CAVITY FILLED WITH A VISCOPLASTIC FLUID BY TAKING INTO ACCOUNT VISCOUS DISSIPATION
Heat Transfer Research, Vol.44, 2013, issue 7
Youb Khaled Benkahla, Nabila Labsi, Abdelkader Boutra
NUMERICAL AND EXPERIMENTAL STUDY OF CONVECTIVE HEAT TRANSFER IN A VERTICAL POROUS CHANNEL USING A NON-EQUILIBRIUM MODEL
Journal of Porous Media, Vol.15, 2012, issue 6
S. Ben Jabrallah, J. P. Corriou, W. Foudhil, Ali Belghith, B. Dhifaoui
LATTICE BOLTZMANN SIMULATION OF HEAT TRANSFER ENHANCEMENT IN AN ASYMMETRICALLY HEATED CHANNEL FILLED WITH RANDOM POROUS MEDIA
Journal of Porous Media, Vol.20, 2017, issue 2
Abbas Abbassi, Alireza Salehi, Mohammad Abbaszadeh