Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 1.199 Factor de Impacto de 5 años: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018020080
pages 617-631

MODELING PHASE-CHANGE MATERIALS HEAT CAPACITY USING ARTIFICIAL NEURAL NETWORKS

Benoit Delcroix
École Polytechnique de Montréal, Department of Mechanical Engineering, 2500 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
M. Kummert
École Polytechnique de Montréal, Department of Mechanical Engineering, 2500 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
A. Daoud
Laboratoire des Technologies de l'Énergie, Institut de Recherche d'Hydro-Québec, 600 Avenue de la Montagne, Shawinigan, QC, G9N 7N5, Canada

SINOPSIS

This article investigates the application of Artificial Neural Networks (ANNs) to model Phase-Change Materials (PCMs) heat capacity using data from Differential Scanning Calorimetry (DSC) tests and experimentations. Coefficients of determination of 0.99 and 0.66 are respectively obtained using two (DSC test) and four (experimentations) independent variables to simulate the dependent variable, i.e., PCM heat capacity. The independent variables include the PCM temperature and heat transfer characteristics such as the heating/cooling rate, heating/cooling duration, and the previous state (temperature and heat capacity). These results show the ability of ANNs for PCM modeling if meaningful independent variables are used.


Articles with similar content:

THERMODYNAMIC MODELING AND EXPERIMENTAL VALIDATION OF FATTY ORGANIC SYSTEMS SOLID-LIQUID EQUILIBRIUM
4th Thermal and Fluids Engineering Conference, Vol.11, 2019, issue
Clément Mailhé, Marie Duquesne
Parametric Identification of Differential-Difference Heat Transfer Models in Non-Stationary Thermal Measurements
Heat Transfer Research, Vol.39, 2008, issue 4
N. Pilipenko
EXPERIMENTAL AND THEORETICAL STUDIES OF THE HEAT TRANSFER CHARACTERISTICS OF THE LAB-SCALE SENSIBLE HEAT STORAGE SYSTEM
International Journal of Energy for a Clean Environment, Vol.20, 2019, issue 2
Ajitanshu Vedrtnam, Mon Prakash Upadhyay, Kishor Kalauni
EVALUATION OF NUMERICAL MODELS FOR THERMAL ANALYSIS OF PRISMATIC LITHIUM-ION BATTERIES
Heat Transfer Research, Vol.48, 2017, issue 12
Il Seouk Park, Hee Won Lee
A Bidirectional Model of Postural Sway Using Force Plate Data
Critical Reviews™ in Biomedical Engineering, Vol.42, 2014, issue 6
Karla D. Bustamante Valles, Jennifer M. Schneider, Susan A. Riedel, Gerald F. Harris, Jason T Long, Ubong I. Udoekwere