Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006434
pages 447-464

ANALYTICAL SOLUTION OF THE PROBLEM OF NON-FOURIER HEAT CONDUCTION IN A SLAB USING THE SOLUTION STRUCTURE THEOREMS

Mohammad Akbari
Department of Mechanical Engineering, Semnan University, Semnan, Iran
Seyfolah Saedodin
Department of Mechanical Engineering, Semnan University, Semnan, Iran
Davood Semiromi Toghraie
Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
Farshad Kowsary
Department of Mechanical Engineering, University College of Engineering, University of Tehran, Tehran 515-14395, Iran

SINOPSIS

This paper studies an analytical method which combines the superposition technique along with the solution structure theorem such that a closed-form solution of the hyperbolic heat conduction equation can be obtained by using the fundamental mathematics. In this paper, the non-Fourier heat conduction in a slab at whose a left boundary there is a constant heat flux and at the right boundary, a constant temperature Ts = 15, has been investigated. The complicated problem is split into multiple simpler problems that in turn can be combined to obtain a solution to the original problem. The original problem is divided into five subproblems by setting the heat generation term, the initial conditions, and the boundary conditions for different values in each subproblem. All the solutions given in this paper can be easily proven by substituting them into the governing equation. The results show that the temperature will start retreating at approximately t = 2 and for t = 2 the temperature at the left boundary decreases leading to a decrease in the temperature in the domain. Also, the shape of the profiles remains nearly the same after t = 4. The solution presented in this study can be used as benchmark problems for validation of future numerical methods.


Articles with similar content:

AN ANALYTICAL SOLUTION OF NON-FOURIER HEAT CONDUCTION IN A SLAB WITH NONHOMOGENEOUS BOUNDARY CONDITIONS USING THE SUPERPOSITION TECHNIQUE AND SOLUTION STRUCTURE THEOREM
Heat Transfer Research, Vol.45, 2014, issue 7
Davood Semiromi Toghraie, M. Akbari, Farshad Kowsary, Seyfolah Saedodin
SOLUTION OF THE INVERSE RADIATIVE LOAD PROBLEMS BY THE SINGULAR VALUE DECOMPOSITION
ICHMT DIGITAL LIBRARY ONLINE, Vol.7, 1995, issue
Akiyoshi Kuroda, Takahiko Saito, Kazuhiko Kudo, Amr Eid, Masahito Oguma
A GENERALIZED COORDINATES APPROACH FOR THE SOLUTION OF INVERSE HEAT CONDUCTION PROBLEMS
International Heat Transfer Conference 11, Vol.19, 1998, issue
M. N. Ozisik, HELCIO ORLANDE, Jose P. Alencar Jr.
Simulation of Melting of Ice under a Constant Temperature Heat Source Using a Combined Transfinite Interpolation and Partial Differential Equation Methods
Journal of Porous Media, Vol.10, 2007, issue 7
C. Serttikul, P. Rattanadecho
Numerical Solution of Burgers' Equation by Petrov−Galerkin Method with Adaptive Weighting Functions
Journal of Automation and Information Sciences, Vol.44, 2012, issue 1
Sergey V. Siryk, Nikolay N. Salnikov