Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019029377
pages 1675-1684

EXPERIMENTAL STUDY OF THERMAL CONDUCTIVITY OF BORIC ACID−WATER SOLUTIONS

Nese Keklikcioğlu Çakmak
Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas 58140, Turkey

SINOPSIS

In this study, it was primarily aimed to prepare and examine the impacts of temperature and weight concentration on the thermophysical characteristics of boric acid-water solutions. Estimation of the boric acid structure was performed by SEM, FT-IR, XRD, and UV-Vis spectrophotometer. Then, homogeneous and stable aqueous boric acid was prepared with a probe sonicator at different weight concentrations. The impacts of boric acid concentration and temperature on thermal conductivity were examined. Thermal conductivity measurements show that boric acid-water solutions have higher thermal conductivity compared to water. There is a strong association between the improvement in thermal conductivity and the concentration of boric acid, and it increases along with the increase in loading. In case the loading of boric acid is 3.0 wt.%, the enhancement ratio is found as 3.95% at a temperature of 25°C, and in case of the increase in temperature to 50°C, the enhancement reaches 5.39%. Thus, the temperature in the temperature range measured determines the enhancement level.

REFERENCIAS

  1. Arias, F., Boron Dilution Effect on Boiling Heat Transfer with Special Reference to Nuclear Reactors Technology, Annals Nucl. Energy, vol. 36, no. 9, pp. 1382-1385, 2009.

  2. Azari, A., Kalbasi, M., Derakhshandeh, M., and Rahimi, M., An Experimental Study on Nanofluids Convective Heat Transfer through a Straight Tube under Constant Heat Flux, Chinese J. Chem. Eng., vol. 21, no. 10, pp. 1082-1088, 2013.

  3. Bethell, D. and Sheppard, N., The Infra-Red Spectrum and Structure of Boric Acid, Trans. Faraday Soc., vol. 51, pp. 9-15, 1955.

  4. Buongiorno, J. and Hu, L.W., Nanofluid Heat Transfer Enhancement for Nuclear Reactor Applications, in ASME 2009 Second Int. Conf. on Micro/Nanoscale Heat and Mass Transfer, American Society of Mechanical Engineers, pp. 517-522, 2009.

  5. Buongiorno, J., Hu, L.W., Kim, S.J., Hannink, R., Truong, B., and Forrest, E., Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps, Nucl. Technol., vol. 162, no. 1, pp. 80-91, 2008.

  6. Carey, VP., Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Boca Raton, Florida: CRC Press, 2018.

  7. Chen, D., Howe, K.J., Dallman, J., Letellier, B.C., Klasky, M., Leavitt, J., and Jain, B., Experimental Analysis of the Aqueous Chemical Environment Following a Loss-of-Coolant Accident, Nucl. Eng. Design, vol. 237, no. 20, pp. 2126-2136, 2007.

  8. Chon, C.H. and Kihm, K.D., Thermal Conductivity Enhancement of Nanofluids by Brownian Motion, J. Heat Transf., vol. 127, no. 8, p. 810, 2005.

  9. Crapse, K. and Kyser, E., Literature Review of Boric Acid Solubility Data, Savannah River National Laboratory, Aiken, SC, Tech. Rep. SRNL-STI-2011-00578, 2011.

  10. Dagdevir, T., Keklikcioglu, O., and Ozceyhan, V., The Effect of Chamfer Length on Thermal and Hydraulic Performance by Using Al2O3-Water Nanofluid through a Square Cross-Sectional Duct, Heat Transf. Res., 2019. DOI: 10.1615/HeatTran-sRes.2018025797.

  11. Decagon Devices, KD2 Pro Thermal Properties Analyzer Operators Manual Version 4, Pullman, WA: Decagon Devices Inc., 2011.

  12. Gujral, S.S., UV-Visible Spectral Analysis of Boric Acid in Different Solvents: A Case Study, Int. J. Pharmaceut. Sci. Res., vol. 6, no. 2, p. 830, 2015.

  13. Han, G.L., Yang, X.C., and Li, B., Numerical and Experimental Study of Flow and Heat Transfer in Outwardly Convex Corrugated Tubes with a Twisted Tape Insert, Heat Transf. Res., vol. 49, no. 16, pp. 1605-1628, 2018.

  14. Jafari, D. and Wits, W.W., The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review, Renew. Sustain. Energy Res., vol. 91, pp. 420-442, 2018.

  15. Jamshidi, N., Farhadi, M., Ganji, D.D., and Sedighi, K., Experimental Investigation on the Viscosity of Nano Fluids, Int. J. Eng. Trans. B: Appl., vol. 25, no. 3, pp. 201-209, 2012.

  16. Jun, L., Shuping, X., and Shiyang, G., FT-IR and Raman Spectroscopic Study of Hydrated Borates, Spectrochimica Acta Part A: Molecular Biomolecular Spectrosc., vol. 51, no. 4, pp. 519-532, 1995.

  17. Keklikcioglu, O. and Ozceyhan, V., Experimental Investigation on Heat Transfer Enhancement in a Circular Tube with Equilateral Triangle Cross Sectioned Coiled-Wire Inserts, Appl. Therm. Eng., vol. 131, pp. 686-695, 2018.

  18. Lide, D., CRC Handbook of Chemistry and Physics, Boca Raton: CRC, 2012.

  19. Lixia, Z., Tao, Y., Jiang, W., and Shiyang, G., FT-IR and Raman Spectroscopic Study of Hydrated Rubidium (Cesium) Borates and Alkali Double Borates, Russ J. Inorg. Chem., vol. 52, no. 11, pp. 1786-1792, 2007.

  20. Nakath, R., Schuster, C., and Hurtado, A., Bubble Size Distribution in Flow Boiling of Aqueous Boric Acid under High Pressure, Nucl. Eng. Design, vol. 262, pp. 562-570, 2013.

  21. Parsons, J. and Milberg, M., Vibrational Spectra of Vitreous B2O3 x H2O, J. Amer. Ceram. Soc., vol. 43, no. 6, pp. 326-330, 1960.

  22. Pietrangelo, A.R., Pressurized Water Reactor Sump Performance Evaluation Methodology, Nuclear Energy Institute, Washington, Tech. Rep. NEI 04-07, 2004.

  23. Rashidi, S., Eskandarian, M., Mahian, O., and Poncet, S., Combination of Nanofluid and Inserts for Heat Transfer Enhancement, J. Therm. Anal. Calorimetry, vol. 135, no. 1, pp. 437-460, 2019.

  24. Salman, B., Mohammed, H., Munisamy, K., and Kherbeet, A.S., Characteristics of Heat Transfer and Fluid Flow in Microtube and Microchannel Using Conventional Fluids and Nanofluids: A Review, Renew. Sustain. Energy Res., vol. 28, pp. 848-880, 2013.

  25. Schott, J., Kretzschmar, J., Acker, M., Eidner, S., Kumke, M.U., Drobot, B., Barkleit, A., Taut, S., Brendler, V., and Stumpf, T., Formation of a Eu(III) Borate Solid Species from a Weak Eu(III) Borate Complex in Aqueous Solution, Dalton Trans., vol. 43, no. 30, pp. 11516-11528, 2014.

  26. Tezel, G.B., Yapici, K., and Uludag, Y., Flow Characterization of Viscoelastic Fluids around Square Obstacle, Periodica Poly-technica Chem. Eng., vol. 63, no. 1, pp. 246-257, 2019a.

  27. Tezel, G.B., Yapici, K., and Uludag, Y., Numerical and Experimental Investigation of Newtonian Flow around a Confined Square Cylinder, Periodica Polytechnica Chem. Eng., vol. 63, no. 1, pp. 190-199, 2019b.

  28. Tuunanen, J., Tuomisto, H., and Raussi, P., Experimental and Analytical Studies of Boric Acid Concentrations in a VVER-440 Reactor during the Long-Term Cooling Period of Loss-of-Coolant Accidents, Nucl. Eng. Design, vol. 148, no. 2, pp. 217-231, 1994.

  29. Wang, H., Wang, G., Xuan, F., and Tu, S., Fracture Mechanism of a Dissimilar Metal Welded Joint in Nuclear Power Plant, Eng. Failure Anal., vol. 28, pp. 134-148, 2013.

  30. Zhang, Z., He, W., Zheng, J., Wang, G., and Ji, J., Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study, Nanoscale Res. Lett., vol. 11, no. 1, p. 502, 2016.