Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018019450
pages 413-422

A GENERAL MINIMUM PRINCIPLE FOR STEADY-STATE CONDUCTION HEAT TRANSFER PROBLEMS WITH TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY SUBJECTED TO LINEAR ROBIN BOUNDARY CONDITIONS

Rogério Martins Saldanha da Gama
Mechanical Engineering Graduate Program (FEN), Rio de Janeiro State University, Rua São Francisco Xavier 524, 20550-013, Rio de Janeiro, Brazil

SINOPSIS

In this paper, a mathematical model is presented for describing the conduction heat transfer process in rigid, isotropic, and homogeneous bodies, with temperature-dependent thermal conductivity and a linear Robin (convection) boundary conditions. The nonlinear partial differential equation, describing the conduction heat transfer inside the body, is rewritten with the aid of a Kirchhoff transformation. The conductivity is regarded as a piecewise constant function of the temperature in such a way that the transformation is easily invertible and may be employed for any material. In addition, a suitable minimum principle is presented for describing the problems considered.


Articles with similar content:

MATHEMATICAL MODELING OF HEAT TRANSFER PROBLEMS FOR THIN PLATES WITH TEMPERATURE-DEPENDENT CONDUCTIVITY
Heat Transfer Research, Vol.48, 2017, issue 12
Rogério Martins Saldanha da Gama, Maria Laura Martins-Costa, Felipe Bastos de Freitas Rachid
EMBEDDING MULTIDIMENSIONAL ABLATION PROBLEMS IN INVERSE HEAT CONDUCTION PROBLEMS USING FINITE DIFFERENCES
International Heat Transfer Conference 6, Vol.3, 1978, issue
John D. Randall
VARIATIONAL EQUATION OF NON-FOURIER HEAT CONDUCTION
Heat Transfer Research, Vol.49, 2018, issue 3
Long Zhang, Xiaomin Zhang, Zimin Yan, Yuan Liang, Bo Yan, Song Peng
AN APPROXIMATE TRANSFORMATION FOR NONLINEAR TRANSIENT HEAT CONDUCTION PROBLEMS
International Heat Transfer Conference 7, Vol.2, 1982, issue
L.S. Fischer , C.W.J, van Kopper, Renzhang Qian
ANALYSIS OF TRANSIENT HEAT TRANSFER MEASUREMENTS ON POROUS THERMAL INSULATIONS
International Heat Transfer Conference 8, Vol.2, 1986, issue
D. W. Yarbrough, D. L. McElroy , Timothy W. Tong