Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018019422
pages 457-481

BUOYANCY-DRIVEN CAVITY FLOW OF A MICROPOLAR FLUID WITH VARIABLY HEATED BOTTOM WALL

Nasir Ali
Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan
Mubbashar Nazeer
Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan
Tariq Javed
Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan
M. A. Siddiqui
Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan

SINOPSIS

This article explores the buoyancy-driven flow of a micropolar fluid in a square conduit. The flow is assumed to be steady, incompressible, and fully developed. The coupling between the energy and momentum equations is achieved using the Boussinesq approximation. A finite element scheme based on penalty formulation is implemented to simulate the governing equations. The simulations are carried out for both cases of constant and variable heating of the bottom wall. The contours of the temperature field and stream function are plotted for several values of involved physical parameters, namely, the Rayleigh number, Prandtl number, and micropolar parameters. The effects of these pertinent parameters on the average and local Nusselt numbers are also quantified. The study shows that the strength of recirculating zones decreases with increase in the micropolar parameter. Moreover, the expansion of isotherms toward the top boundary surface of an enclosure is noted for greater values of the micropolar parameter. The local and average Nusselt numbers decrease with change in the behavior of the fluid from Newtonian to micropolar.


Articles with similar content:

STAGNATION-POINT FLOW OVER A STRETCHING/SHRINKING CYLINDER IN A ALUMINA-WATER NANOFLUID
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Noor Syamimi Omar, Norfifah Bachok, Anuar Ishak, Norihan Md. Arifin
Transient Natural Convection in Differentially Heated Porous Enclosures
Journal of Porous Media, Vol.3, 2000, issue 2
A. A. Merrikh, A. A. Mohamad
Simultaneous Heat and Mass Transfer by Natural Convection from a Cone and a Wedge in Porous Media
Journal of Porous Media, Vol.3, 2000, issue 2
Osamah Al-Hawaj, Ali J. Chamkha, A.-R.A. Khaled
Prandtl Number Effects on Mixed Convection in a Lid-Driven Porous Cavity
Journal of Porous Media, Vol.11, 2008, issue 8
M. Muthtamilselvan, Jinho Lee, Prem Kumar Kandaswamy
STEADY DOUBLE-DIFFUSIVE MIXED CONVECTION BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM FILLED BY A NANOFLUID USING BUONGIORNO'S MODEL
Journal of Porous Media, Vol.19, 2016, issue 4
Ioan Pop, Anuar Ishak, Mohd Hafizi Mat Yasin