Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v40.i8.10
pages 717-727

Incremental Heat Conduction Versus Mass Reduction in Large Corrugated Walls Derived from a Large Plane Wall

Antonio Campo
Department of Mechanical Engineering, The University of Vermont, Burlington, VT 05405, USA
Justin E. Robbins
Department of Mechanical Engineering, The University of Vermont, Burlington, VT 05405, USA

SINOPSIS

A conventional large plane wall of thickness H is equivalent to a cluster of stackable square modules of side H with a hot left side, a cold right side, and insulated top and bottom sides (or planes of symmetry). When the two vertical sides of a primary square module are bent inward symmetrically, various kinds of scalloped modules (inscribed in the square module) could be formed depending upon the levels of curvature. Correspondingly, a collection of large corrugated walls can be built consisting of stackable scalloped modules. The heat conduction across any secondary scalloped module is intrinsically two-dimensional, in contrast to the heat conduction across a primary square module that is one-dimensional. As a "proof-of-concept", the governing heat conduction equation in two dimensions is solved numerically with the Finite Element Method under the COMSOL platform for three pre-selected derived modules with different degrees of scallopness. The heat conduction enhancement of the three scalloped modules is contrasted against the basic square module, taking into account concurrently the beneficial mass reduction.

REFERENCIAS

  1. P. J. Schneider, Conduction Heat Transfer.

  2. H. S. Carslaw and J. Ñ Jaeger, Conduction of Heat in Solids.

  3. V. Arpaci, Conduction Heat Transfer.

  4. A. V. Luikov, Analytical Heat Diffusion Theory.

  5. G. E. Myers, Analytical Methods in Conduction Heat Transfer.

  6. U. Grigull and H. Sanders, Heat Conduction.

  7. S. Kakac and Y. Yener, Heat Conduction.

  8. M. N. Ozisik, Heat Conduction.

  9. D. Poulikakos, Conduction Heat Transfer.

  10. J. Taler and P. Duda, Solving Direct and Inverse Heat Conduction Problems.

  11. J. E. Sunderland and K. R. Johnson, Shape factors for heat conduction through bodies with isothermal boundaries.

  12. E. Hahne and U. Grigull, Formfaktor und Formwiderstand der stationaren mehrdimensionalen Warmeleitung.

  13. ASHRAE Handbook of Fundamentals.

  14. D. W. Pepper and J. C. Heinrich, The Finite Element Method: Concepts and Applications.

  15. I. Langmuir, E. Q. Adams, and G. S. Meikle, Flow of heat through furnace walls: the shape factor.


Articles with similar content:

NUMERICAL EVALUATION OF NATURAL CONVECTION HEAT TRANSFER IN A SUPPLY-AIR PAZIAUD WINDOW
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 5
Ahmed Mezrhab, Abdelillah Amrani, Samir Amraqui, Nadia Dihmani
EFFECT OF THE DISTANCE FROM THE WALL OF A BELOW-WINDOW HOT AIR FLOOR VENT ON THE CONVECTIVE HEAT TRANSFER FROM A COLD WINDOW FITTED WITH A TOP-DOWN BOTTOM-UP PLANE BLIND SYSTEM
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Patrick H. Oosthuizen
NUMERICAL STUDY OF THE EFFECT OF VENT SIZE ON NATURAL CONVECTIVE HEAT TRANSFER FROM A SQUARE HORIZONTAL ISOTHERMAL HEATED SURFACE MOUNTED IN A FLAT ADIABATIC BASE AND SURROUNDED BY A PROTECTIVE COVER
First Thermal and Fluids Engineering Summer Conference, Vol.7, 2015, issue
Patrick H. Oosthuizen
Effects of Exterior Surface Dimples on Heat Transfer and Friction Factors for a Cross-Flow Heat Exchanger
Journal of Enhanced Heat Transfer, Vol.13, 2006, issue 1
Alexander P. Kozlov, Yaroslav Chudnovsky, Lester D. Sherrow, Phillip Ligrani
Natural convection in rectangular enclosures heated from below and symmetrically cooled from the top and both sides
International Heat Transfer Conference 12, Vol.8, 2002, issue
Massimo Corcione, Lucia Fontana