Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 1.199 Factor de Impacto de 5 años: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018025888
pages 335-348

ENTROPY GENERATION ANALYSIS OF FORCED CONVECTION FLOW IN A SEMICIRCULAR MICROCHANNEL WITH TiO2/WATER NANOFLUID

Hüseyin Kaya
Faculty of Engineering, Architecture and Design, Mechanical Engineering Department, Bartın University, Bartin, Turkey
Recep Ekiciler
Gazi University, Faculty of Engineering, Mechanical Engineering Department, Ankara, Turkey
Kamil Arslan
Karabük University

SINOPSIS

In this study, entropy generation caused by heat transfer and friction of forced convection flow in a semicircular cross-sectioned microchannel with TiO2/water nanofluid was numerically analyzed. The volume concentrations of the nanofluid were taken 1.0%, 2.0%, 3.0%, and 4.0%. Local and total entropy generation due to the heat transfer and friction were calculated for the microchannel. A three-dimensional analysis was simulated under steady-state laminar flow conditions with Reynolds number varying from 100 to 1000. The results of the simulation were obtained using the CFD code. The flow was considered as hydrodynamically fully developed under thermally developing conditions. A uniform heat flux boundary condition was applied at the bottom surface of the microchannel. According to the results of the numerical study, the effect of the nanofluid volume concentration and fluid velocity on entropy generation was evaluated. The findings show that the total and friction values of entropy generation increase with increasing flow velocity, while heat transfer entropy generation values decrease since nanofluids improve the heat transfer capability. Also, the results indicate that an increase in the volume concentration of the nanofluid causes friction entropy generation enhancement while heat transfer entropy generation decreases in all cases.


Articles with similar content:

COMPUTER SIMULATION OF MIXED CONVECTION FLOW OF NANOFLUIDS PAST A CONTINUOUSLY MOVING VERTICAL PLATE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Partha S. Ghoshdastidar, Hunaid Ali Shakkarwala
COMPUTATIONAL FLUID DYNAMICS MODELING OF DEVELOPING FORCED LAMINAR CONVECTION FLOW OF AL2O3–WATER NANOFLUID IN A TWO-DIMENSIONAL RECTANGULAR SECTION CHANNEL
Journal of Enhanced Heat Transfer, Vol.25, 2018, issue 4-5
Luca A. Tagliafico, Annalisa Marchitto, Vincenzo Bianco, Federico Scarpa
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum
NUMERICAL INVESTIGATION OF TURBULENT NANOFLUID FLOW AND TWO-DIMENSIONAL FORCED-CONVECTION HEAT TRANSFER IN A SINUSOIDAL CONVERGING-DIVERGING CHANNEL
Heat Transfer Research, Vol.50, 2019, issue 7
Davood Semiromi Toghraie, Ramin Mashayekhi, Omid Ali Akbari, Ali Koveiti
THERMAL-FLOW CHARACTERISTICS OF FERROFLUID IN THE MICROCHANNEL UNDER EXTERNAL MAGNETIC FORCE
International Heat Transfer Conference 16, Vol.6, 2018, issue
Jae-Hee Kim, Youn-Jea Kim