Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Therapeutic Drug Carrier Systems
Factor de Impacto: 2.9 Factor de Impacto de 5 años: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN Imprimir: 0743-4863
ISSN En Línea: 2162-660X

Volumes:
Volumen 36, 2019 Volumen 35, 2018 Volumen 34, 2017 Volumen 33, 2016 Volumen 32, 2015 Volumen 31, 2014 Volumen 30, 2013 Volumen 29, 2012 Volumen 28, 2011 Volumen 27, 2010 Volumen 26, 2009 Volumen 25, 2008 Volumen 24, 2007 Volumen 23, 2006 Volumen 22, 2005 Volumen 21, 2004 Volumen 20, 2003 Volumen 19, 2002 Volumen 18, 2001 Volumen 17, 2000 Volumen 16, 1999 Volumen 15, 1998 Volumen 14, 1997 Volumen 13, 1996 Volumen 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v18.i5.20
43 pages

Multifunctional Matrices for Oral Peptide Delivery

Andreas Bernkop-Schnurch
Institute of Pharmaceutical Technology and Biopharmaceutics, Center of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
Greg Walker
Institute of Pharmaceutical Technology and Biopharmaceutics, Center of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria

SINOPSIS

The oral administration of peptide drugs represents one of the greatest challenges in pharmaceutical technology. To gain a sufficient bioavailability of these therapeutic agents, various barriers including the mucus-layer barrier, the enzymatic barrier, and the membrane barrier have to be overcome. A promising strategy for achieving this goal is the use of multifunctional matrices. These matrices are based on polymers that display mucoadhesive properties, a permeation-enhancing effect, enzyme-inhibiting properties, and/or a high buffer capacity. Moreover, a sustained or delayed drug release can be provided by delivery systems that contain such polymers. Among them, polyacrylates, cellulose derivatives, and chitosan are promising excipients that can also be customized by chemical modification to improve certain properties.For example, the covalent attachment of thiol moieties on these polymers leads to improved mucoadhesive and permeation-enhancing properties, and the conjugation of enzyme inhibitors enables the matrices to provide protection for peptide drugs against enzymatic degradation. The efficacy of multifunctional matrices in oral peptide delivery has been verified by various in vivo studies that could pave the way for the development of commercially viable formulations.


Articles with similar content:

Lipid-Based Cochleates: A Promising Formulation Platform for Oral and Parenteral Delivery of Therapeutic Agents
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 1
Emilio Squillante, III, Kwon H. Kim, Ravi Rao
Nano-Aggregates: Emerging Delivery Tools for Tumor Therapy
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 6
Vinod Kumar Sharma, Ankit Jain, Vandana Soni
Pharmaceutical and Biomedical Potential of Surface Engineered Dendrimers
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 3
Narendra Kumar Jain, Umesh Gupta, Jitendra Satija
Ligand-Appended BBB-Targeted Nanocarriers (LABTNs)
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 2
Ankit Jain, Sanjay Kumar Jain
Structuring Polymers for Delivery of DNA-Based Therapeutics: Updated Insights
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 6
Suresh P. Vyas, Shailja Tiwari, Madhu Gupta