Suscripción a Biblioteca: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Publicado 6 números por año

ISSN Imprimir: 0743-4863

ISSN En Línea: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Polysaccharides against Viruses: Immunostimulatory Properties and the Delivery of Antiviral Vaccines and Drugs

Volumen 37, Edición 1, 2020, pp. 1-64
DOI: 10.1615/CritRevTherDrugCarrierSyst.2019027229
Get accessGet access

SINOPSIS

Because viruses still represent a significant threat to human and animal health worldwide, the development of effective weapons against viral infections remains a top priority for the biopharmaceutical industry. This article reviews the dietary and pharmaceutical applications of polysaccharides (PS), first of all chitosan, in the prevention and treatment of viral diseases, focusing more particularly on solid or gel micro/nanoparticulate systems. The intrinsic antiviral activity of PS and their immunostimulatory effects, implemented in animal and human diets, are first surveyed. Then the review discusses the potential of PS-based particles as carriers of antiviral drugs and vaccines, with emphasis on the adjuvant potency of PS in solid vaccine formulations. The gap between the abundance of academic studies in this area and the lack of actual antiviral formulations dispensed to human patients is underlined, notwithstanding a number of branded products on the market.

REFERENCIAS
  1. Alter SJ, Bennett JS, Koranyi K, Kreppel A, Simon R. Common childhood viral infections. Curr Probl Pediatr Adolesc Health Care. 2015:45(2):21-53.

  2. Zambon M. Influenza and other emerging respiratory viruses. Medicine. 2014;42(1):45-51.

  3. Murray MJ. Ebola virus disease: a review of its past and present. Anesth Analg. 2015;121(3):798-809.

  4. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, Ou M, Han Y, Huang S, Liu D, Ye X. Global epidemiology of dengue outbreaks in 1990-2015: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2017 Jul 12;7:317. doi:10.3389/fcimb.2017.00317.

  5. Piot P, Abdool Karim SS, Hecht R, Legido-Quigley H, Buse K, Stover J, Resch S, Ryckman T, M0gedal S, Dybul M, Goosby E, Watts C, Kilonzo N, McManus J, Sidibe M. Defeating AIDS-advancing global health. Lancet. 2015;386(9989):171-218.

  6. El-Serag HB. Epidemiology viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012; 142(6):1264-73.

  7. World Health Organization. Influenza (seasonal). Geneva: World Health Organization; 2018 Jan 31. Available from: http://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal).

  8. World Health Organization. Dengue and severe dengue. Geneva: World Health Organization; 2018 Sept 13. Available from: http://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue.

  9. World Health Organization. World health statistics 2017: monitoring health for the SDGs (Sustainable Development Goals). Geneva: World Health Organization; 2017. Available from: http://apps.who.int/iris/bitstream/handle/10665/255336/9789241565486-eng.pdf.

  10. Centers for Disease Control and Prevention (CDC). Ebola (Ebola virus disease). History of Ebola virus disease: 2014-2016 Ebola outbreak in West Africa. Updated 2017 Dec 27. Available from: https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html.

  11. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). Geneva: World Health Organization; 2018 Sep 17. Available from: http://www.who.int/emergencies/mers-cov/ en/.

  12. Jamal SM, Belsham GJ. Foot-and-mouth disease: past, present and future. Vet Res. 2013;44:116. doi:10.1186/1297-9716-44-116.

  13. Walker PJ, Winton JR. Emerging viral diseases of fish and shrimp. Vet Res. 2010;41:51. doi:10.1051/ vetres/2010022.

  14. Ngo DH, Kim SK. Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol. 2013;62:70-5.

  15. de Jesus Raposo MF, de Morais AMB, de Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs. 2015;13(5):2967-3028.

  16. Mourao PA. Perspective on the use of sulfated polysaccharides from marine organisms as a source of new antithrombotic drugs. Mar Drugs. 2015;13(5):2770-84.

  17. Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA. Structure-function relationships of immunostimulatory polysaccharides: a review. Carbohydr Polym. 2015;132:378-96.

  18. Pang G, Wang F, Zhang LW. Dose matters: Direct killing or immunoregulatory effects of natural poly-saccharides in cancer treatment. Carbohydr Polym. 2018;195:243-256.

  19. Sanjeewa KA, Lee JS, Kim WS, Jeon YJ. The potential of brown-algae polysaccharides for the development of anticancer agents: an update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym. 2017;177:451-9.

  20. Wang H, Liu YM, Qi ZM, Wang SY, Liu SX, Li X, Wang HJ, Xia XC. An overview on natural polysaccharides with antioxidant properties. Curr Med Chem. 2013;20(23):2899-2913.

  21. Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev. 2016;2016. doi:10.1155/2016/5692852.

  22. Junter GA, Lebrun L. Cellulose-based virus-retentive filters: a review. Rev Environ Sci Biotechnol. 2017;16(3):455-89.

  23. Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs. 2012;10(12):2795-816.

  24. Ahmadi A, Moghadamtousi SZ, Abubakar S, Zandi K. Antiviral potential of algae polysaccharides isolated from marine sources: a review. Biomed Res Int. 2015;2015:825203. doi:org/10.1155/2015/825203.

  25. Shi Q, Wang A, Lu Z, Qin C, Hu J, Yin J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr Res. 2017;453:1-9.

  26. Chen L, Huang G. The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol. 2018;115:77-82.

  27. Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Schue F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2012;84(2):377-410.

  28. ISO (International Organization for Standardization). ISO/TS 27687:2008(E) technical specification: Nanotechnologies - Terminology and definitions for nano-objects-Nanoparticle, nanofibre and nanoplate. Geneva (Switzerland): ISO; 2008.

  29. ASTM (American Society for Testing and Materials). ASTM E2456-06(2012): Standard terminology relating to nanotechnology. West Conshohocken (PA): ASTM International; 2012.

  30. Green RH, Woolley DW. Inhibition by certain polysaccharides of hemagglutination and of multiplication of influenza virus. J Exp Med. 1947;86(1):55-64.

  31. Ginsberg HS, Goebel WF, Horsfall FL Jr. The inhibitory effect of polysaccharide on mumps virus multiplication. J Exp Med. 1948;87(5):385-410.

  32. Takemoto KK, Fabisch P. Inhibition of herpes virus by natural and synthetic acid polysaccharides. Exp Biol Med. 1964;116(1):140-4.

  33. Vaheri A. Heparin and related polyionic substances as virus inhibitors. Acta Pathol Microbiol Scand Suppl. 1964;171:1-98 (Reprinted as Acta Pathol Microbiol Scand. 2007;115(5):565-70).

  34. Baba M, Pauwels R, Balzarini J, Arnouy J, Desmyter J, De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci USA. 1988;85(16):6132-6.

  35. Mitsuya H, Looney DJ, Kuno S, Ueno R, Wong-Staal F, Broder S. Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science. 1988;240(4852):646-9.

  36. Talarico LB, Noseda MD, Ducatti DRB, Duarte MER, Damonte EB. Differential inhibition of dengue virus infection in mammalian and mosquito cells by iota-carrageenan. J Gen Virol. 2011;92(6):1332-42.

  37. Chiu YH, Chan YL, Tsai LW, Li TL, Wu CJ. Prevention of human enterovirus 71 infection by kappa carrageenan. Antiviral Res. 2012;95(2):128-34.

  38. Luo Z, Tian D, Zhou M, Xiao W, Zhang Y, Li M, Sui B, Wang W, Guan H, Chen H, Fu ZF, Zhao L. X-Carrageenan P32 is a potent inhibitor of rabies virus infection. PLoS One. 2015;10(10):e0140586. doi:10.1371/journal.pone.0140586.

  39. Diogo JV, Novo SG, Gonzalez MJ, Ciancia M, Bratanich AC. Antiviral activity of lambda-carra-geenan prepared from red seaweed (Gigartina skottsbergii) against BoHV-1 and SuHV-1. Res Vet Sci. 2015;98:142-4.

  40. Pujol CA, Ray S, Ray B, Damonte EB. Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int J Biol Macromol. 2012;51(4):412-6.

  41. Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G, Cerantola S, Riadi H, Bourgougnon N. Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Mar Drugs. 2011;9(7):1187-209.

  42. Mendes GS, Duarte ME, Colodi FG, Noseda MD, Ferreira LG, Berte SD, Cavalcanti JF, Santos N, Romanos MTV. Structure and anti-metapneumovirus activity of sulfated galactans from the red sea-weed Cryptonemia seminervis. Carbohydr Polym. 2014;101:313-23.

  43. Malagoli BG, Cardozo FT, Gomes JHS, Ferraz VP, Simoes CM, Braga FC. Chemical characterization and antiherpes activity of sulfated polysaccharides from Lithothamnion muelleri. Int J Biol Macromol. 2014;66:332-7.

  44. Thuy TT, Ly BM, Van TTT, Van Quang N, Tu HC, Zheng Y, Seguin-Devaux C, Mi B, Ai U. Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr Polym. 2015;115:122-8.

  45. Wozniak M, Bell T, Denes A, Falshaw R, Itzhaki R. Anti-HSV1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer's disease. Int J Biol Macromol. 2015;74:530-40.

  46. Synytsya A, Bleha R, Synytsya A, Pohl R, Hayashi K, Yoshinaga K, Nakano T, Hayashi T. Mekabufucoidan: structural complexity and defensive effects against avian influenza A viruses. Carbohydr Polym. 2014;111:633-44.

  47. Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J. 2012;9:307. doi:10.1186/1743-422X-9-307.

  48. Saha S, Navid MH, Bandyopadhyay SS, Schnitzler P, Ray B. Sulfated polysaccharides from Laminaria angustata: structural features and in vitro antiviral activities. Carbohydr Polym. 2012;87(1):123-30.

  49. Aguilar-Briseno JA, Cruz-Suarez LE, Sassi JF, Ricque-Marie D, Zapata-Benavides P, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM. Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection. Mar Drugs. 2015;13(2):697-712.

  50. Mader J, Gallo A, Schommartz T, Handke W, Nagel CH, Gunther P, Brune W, Reich K. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J Allergy Clin Immunol. 2016;137(1):197-203.

  51. Kim M, Yim JH, Kim SY, Kim HS, Lee WG, Kim SJ, Kang PS, Lee CK. In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res. 2012;93(2):253-9.

  52. Campo VL, Kawano DF, da Silva DB, Carvalho I. Carrageenans: biological properties, chemical modifications and structural analysis-a review. Carbohydr Polym. 2009;77(2):167-80.

  53. Yasuhara-Bell J, Lu Y. Marine compounds and their antiviral activities. Antiviral Res. 2010;86(3): 231-40.

  54. Bixler HJ, Porse H. A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. 2011;23(3):321-35.

  55. Grassauer A, Prieschl-Grassauer E, Koller C, Pretsch A, inventors; Marinomed Biotechnologie GmbH, assignee. Antiviral composition and method of use. United States patent US 8282969 B2. 2012 Oct 9.

  56. Ludwig M, Enzenhofer E, Schneider S, Rauch M, Bodenteich A, Neumann K, Priesch-Grassauer E, Grassauer A, Lion T, Mueller CA. Efficacy of a carrageenan nasal spray in patients with common cold: a randomized controlled trial. Respir Res. 2013;14:124. doi:10.1186 /1465-9921-14-124.

  57. Eccles R, Winther B, Johnston SL, Robinson P, Trampisch M, Koelsch S. Efficacy and safety of iota-carrageenan nasal spray versus placebo in early treatment of the common cold in adults: the ICICC trial. Respir Res. 2015;16:121. doi:10.1186/s12931-015-0281-8.

  58. Morokutti-Kurz M, Konig-Schuster M, Koller C, Graf C, Graf P, Kirchoff N, Reutterer B, Seifery JM, Unger H, Grassauer A, Prieschl-Grassauer E, Nakowitsch S. The intranasal application of Zanamivir and carrageenan is synergistically active against influenza A virus in the murine model. PLoS One. 2015;10(6):e0128794. doi:10.1371/journal.pone.0128794.

  59. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133-74.

  60. Davis R, Zivanovic S, D'Souza DH, Davidson PM. Effectiveness of chitosan on the inactivation of enteric viral surrogates. Food Microbiol. 2012;32(1):57-62.

  61. Davis R, Zivanovic S, Davidson PM, D'Souza DH. Enteric viral surrogate reduction by chitosan. Food Environ Virol. 2015;7(4):359-65.

  62. Artan M, Karadeniz F, Karagozlu MZ, Kim MM, Kim SK. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr Res. 2010;345(5):656-62.

  63. Karthik R, Manigandan V, Saravanan R, Rajesh RP, Chandrika B. Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis. Int J Biol Macromol. 2016;84:319-28.

  64. He X, Xing R, Li K, Qin Y, Zou P, Liu S, Yu H, Li P. Beta-chitosan extracted from Loligo Japonica for a potential use to inhibit Newcastle disease. Int J Biol Macromol. 2016;82:614-20.

  65. Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today. 2016;21(2):356-62.

  66. Yang H, Parniak MA, Isaacs CE, Hillier SL, Rohan LC. Characterization of cyclodextrin inclusion complexes of the anti-HIV non-nucleoside reverse transcriptase inhibitor UC781. AAPS J. 2008;10(4):606-13.

  67. Glisoni RJ, Cuestas ML, Mathey VL, Oubina JR, Moglioni AG, Sosnik A. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-P-cyclodextrin. Eur J Pharm Sci. 2012;47(3):596-603.

  68. Xiao S, Wang Q, Si L, Zhou X, Zhang Y, Zhang L, Zhou D. Synthesis and biological evaluation of novel pentacyclic triterpene a-cyclodextrin conjugates as HCV entry inhibitors. Eur J Med Chem. 2016;124:1-9.

  69. Tian Z, Si L, Meng K, Zhou X, Zhang Y, Zhou D, Xiao S. Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin conjugates. Eur J Med Chem. 2017;134:133-9.

  70. Imperiale JC, Sosnik AD. Cyclodextrin complexes for treatment improvement in infectious diseases. Nanomedicine. 2015;10(10):1621-41.

  71. Barman S, Nayak DP. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol. 2007;81(22):12169-78.

  72. Bremer CM, Bung C, Koty N, Hardy M, Glebe D. Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cell Microbiol. 2009;11(2):249-60.

  73. Carro AC, Damonte EB. Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res. 2013;174(1):78-87.

  74. Carter GC, Bernstone L, Sangani D, Bee JW, Harder T, James W. HIV entry in macrophages is dependent on intact lipid rafts. Virology. 2009;386(1):192-202.

  75. Medigeshi GR, Hirsch AJ, Streblow DN, Nikolich-Zugich J, Nelson JA. West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of avp3 integrin. J Virol. 2008;82(11):5212-9.

  76. Bernard E, Solignat M, Gay B, Chazal N, Higgs S, Devaux C, Briany L. Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One. 2010;5(7):e11479. doi:10.1371/journal.pone.0011479.

  77. Zhu YZ, Wu DG, Ren H, Xu QQ, Zheng KC, Chen W, Chen SL, Qian XJ, Tao QY, Wang Y, Zhao P, Qi ZT. The role of lipid rafts in the early stage of Enterovirus 71 infection. Cell Physiol Biochem. 2015;35(4):1347-59.

  78. Hildreth JE, inventor; The Johns Hopkins University School of Medicine, assignee. P-Cyclodextrin compositions and use to prevent transmission of sexually transmitted diseases. United States patent US 7589080 B2. 2009 Sep 15.

  79. Vitins P, Langenauer M, inventors. Cyclodextrin formulations. United States patent US 2010/0111883 A1. 2010 May 6.

  80. Na YS, Kim WJ, Kim SM, Park JK, Lee SM, Kim SO, Synytsya A, Park YI. Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens. Int Immunopharmacol. 2010;10(3):364-70.

  81. Hayashi K, Lee JB, Nakano T, Hayashi T. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect. 2013;15(4):302-9.

  82. Song L, Chen X, Liu X, Zhang F, Hu L, Yue Y, Li K, Li P. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar Drugs. 2015;14(1):4. doi:10.3390/md14010004.

  83. Yoo DG, Kim MC, Park MK, Park KM, Quan FS, Song JM, Wee JJ, Wang BZ, Cho YK, Compans RW, Kang SM. Protective effect of ginseng polysaccharides on influenza viral infection. PLoS One. 2012;7(3):e33678. doi:10.1371/journal.pone.0033678.

  84. Kallon S, Li X, Ji J, Chen C, Xi Q, Chang S, Xue C, Ma J, Xie Q, Zhang Y. Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo. J Anim Sci Biotechnol. 2013;4(1):22. doi:10.1186/2049-1891-4-22.

  85. Lin Z, Liao W, Ren J. Physicochemical characterization of a polysaccharide fraction from Platycladus orientalis (L.) franco and its macrophage immunomodulatory and anti-hepatitis B virus activities. J Agric Food Chem. 2016;64(29):5813-23.

  86. Iriti M, Varoni EM. Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res. 2015;22(4):2935-44.

  87. Xing K, Zhu X, Peng X, Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev. 2015;35(2):569-88.

  88. Yin H, Zhao X, Du Y. Oligochitosan: a plant diseases vaccine-a review. Carbohydr Polym. 2010;82(1):1-8.

  89. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6:257. doi:10.3389/fimmu.2015.00257.

  90. Ramberg JE, Nelson ED, Sinnoty RA. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J. 2010;9:54. doi:10.1186/1475-2891-9-54.

  91. Rodriguez B, Owen KQ, Freitas U, Udani J, inventors. Arabinogalactan for enhancing the adaptive immune response. United States patent US 2011/0076306 A1. 2011 Mar 31.

  92. Shan JJ, Pang PK, Huang B, Ling L, inventors; fX Life Sciences International GmbH, assignee. Processes of making North American ginseng fractions, products containing them, and use as immunomodulators. United States patent US 7413756 B2. 2008 Aug 19.

  93. Predy GN, Goel V, Lovlin R, Donner A, Stity L, Basu TK. Efficacy of an extract of North American ginseng containing poly-furanosyl-pyranosyl-saccharides for preventing upper respiratory tract infections: a randomized controlled trial. Can Med Assoc J. 2005;173(9):1043-8.

  94. Udani JK, Singh BB, Barrety ML, Singh VJ. Proprietary arabinogalactan extract increases antibody response to the pneumonia vaccine: a randomized, double-blind, placebo-controlled, pilot study in healthy volunteers. Nutr J. 2010;9:32. doi:10.1186/1475-2891-9-32.

  95. Riede L, Grube B, Gruenwald J. Larch arabinogalactan effects on reducing incidence of upper respiratory infections. Curr Med Res Opin. 2013;29(3):251-8.

  96. Ring0 E, Olsen RE, Vecino JLG, Wadsworth S, Song SK. Use of immunostimulants and nucleotides in aquaculture: a review. J Mar Sci Res Dev. 2012;1:104. doi:10.4172/2155-9910.1000104.

  97. Zekovic DB, Kwiatkowski S, Vrvic MM, Jakovljevic D, Moran CA. Natural and modified (1-3)-P-D-glucans in health promotion and disease alleviation. Crit Rev Biotechnol. 2005;25(4):205-30.

  98. Chen J, Seviour R. Medicinal importance of fungal P-(1-3),(1-6)-glucans. Mycol Res. 2007;111(6):635-52.

  99. Chang CF, Su MS, Chen HY, Liao IC. Dietary P-1'3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol. 2003:15(4):297-310.

  100. Yeh SP, Chang CA, Chang CY, Liu CH, Cheng W. Dietary sodium alginate administration affects fingerling growth and resistance to Streptococcus sp. and iridovirus, and juvenile non-specific immune responses of the orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol. 2008;25(1):19-27.

  101. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1): 106-26.

  102. Declarador RS, Serrano Jr AE, Corre Jr VL. Ulvan extract acts as immunostimulant against white spot syndrome virus (WSSV) in juvenile black tiger shrimp Penaeus monodon. Aquac Aquar Conserv Legis. 2014;7(3):153-61.

  103. Immanuel G, Sivagnanavelmurugan M, Marudhupandi T, Radhakrishnan S, Palavesam A. The effect of fucoidan from brown seaweed Sargassum wightii on WSSV resistance and immune activity in shrimp Penaeus monodon (Fab). Fish Shellfish Immunol. 2012;32(4):551-64.

  104. Du X, Zhao B, Li J, Cao X, Diao M, Feng H, Chen X, Chen Z, Zeng X. Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int Immunopharmacol. 2012;14(4):463-70.

  105. Feng H, Fan J, Qiu H, Wang Z, Yan Z, Yuan L, Guan L, Du X, Song Z, Han X, Liu J. Chuanminshen violaceum polysaccharides improve the immune responses of foot-and-mouth disease vaccine in mice. Int J Biol Macromol. 2015;78:405-16.

  106. Zhao X, Sun W, Zhang S, Meng G, Qi C, Fan W, Wang Y, Liu J. The immune adjuvant response of polysaccharides from Atractylodis macrocephalae Koidz in chickens vaccinated against Newcastle disease (ND). Carbohyd Polym. 2016;141:190-6.

  107. Wang M, Meng X, Yang R, Qin T, Li Y, Zhang L, Fei C, Zhen W, Zhang K, Wang X, Hu Y. Cordyceps militaris polysaccharides can improve the immune efficacy of Newcastle disease vaccine in chicken. Int J Biol Macromol. 2013;59:178-83.

  108. Zhang P, Ding R, Jiang S, Ji L, Pan M, Liu L, Zhang W, Gao X, Huang W, Zhang G, Peng L. The adjuvanticity of Ganoderma lucidum polysaccharide for Newcastle disease vaccine. Int J Biol Macromol. 2014;65:431-5.

  109. Wu Y, Li S, Li H, Zhao C, Ma H, Zhao X, Wu J, Liu K, Shan J, Wang Y. Effect of a polysaccharide from Poria Cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines. Int J Biol Macromol. 2016;91:248-57.

  110. Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine. 2010;28(48): 7690-8.

  111. Svindland SC, Pedersen GK, Pathirana RD, Bredholy G, Nastbakken JK, Jul-Larsen A, Guzman CA, Montomoli E, Lapini G, Piccirella S, Jabbal-Gill I, Hinchcliffe M, Cox RJ. A study of chitosan and c-di-GMP as mucosal adjuvants for intranasal influenza H5N1 vaccine. Influenza Other Respir Viruses. 2013;7(6):1181-93.

  112. Illum L, Chatfield SN, inventors; Archimedes Development Limited, assignee. Vaccine compositions including chitosan for intranasal administration and use thereof. United States patent US 7323183 B2. 2008 Jan 29.

  113. Svindland SC' Jul-Larsen A, Pathirana R, Andersen S, Madhun A, Montomoli E, Jabbal-Gill I, Cox RJ. The mucosal and systemic immune responses elicited by a chitosan-adjuvanted intranasal influenza H5N1 vaccine. Influenza Other Respir Viruses. 2012;6(2):90-100.

  114. Mann AJ, Noulin N, Catchpole A, Stittelaar KJ, De Waal L, Veldhuis Kroeze EJB, Hinchcliffe M, Smith A, Montomoli E, Piccirella S, Osterhaus ADME, Knighy A, Oxford JS, Lapini G, Cox R, Lambkin-Williams R. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge. PLoS One. 2014;9(5):e93761. doi:10.1371/journal.pone.0093761.

  115. Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vacc Immunother. 2014;10(3):797-807.

  116. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51(1):81-96.

  117. Cutler B, Justman J. Vaginal microbicides and the prevention of HIV transmission. Lancet Infect Dis. 2008;8(11):685-97.

  118. Pirrone V, Wigdahl B, Krebs FC. The rise and fall of polyanionic inhibitors of the human immunode-ficiency virus type 1. Antiviral Res. 2011;90(3):168-82.

  119. Neurath AR, Debnath AK, Jiang S, Strick N, Dow GJ, inventors; New York Blood Center, Inc, assignee. Method for decreasing the frequency of transmission of viral infections using cellulose acetate phthalate or hydroxypropyl methylcellulose phthalate excipients. United States patent 5985313. 1999 Nov 16.

  120. Van Damme L, Govinden R, Mirembe FM, Guedou F, Solomon S, Becker ML, Pradeep BS, Krishnan AK, Alary M, Pande B, Ramjee G, Deese J, Crucitti T, Taylor D. Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N Engl J Med. 2008;359(5):463-72.

  121. Skoler-Karpoff S, Ramjee G, Ahmed K, Altini L, Gehret Plagianos M, Friedland B, Govender S, De Kock A, Cassim N, Panalee T, Dozier G, Maguire R, Lahteenmaki P. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9654):1977-87.

  122. Marais D, Gawarecki D, Allan B, Ahmed K, Altini L, Cassim N, Gopolang F, Hoffman M, Ramjee G, Williamson AL. The effectiveness of Carraguard, a vaginal microbicide, in protecting women against high-risk human papillomavirus infection. Antivir Ther. 2011;16(8):1219-26.

  123. Rodriguez A, Kleinbeck K, Mizenina O, Kizima L, Levendosky K, Jean-Pierre N, Villegas G, Ford BE, Cooney ML, Teleshova N, Robbiani M, Herold BC, Zydowsky TM, Fernandez Romero JA. In vitro and in vivo evaluation of two carrageenan-based formulations to prevent HPV acquisition. Antiviral Res. 2014;108:88-93.

  124. Novetsky AP, Keller MJ, Gradissimo A, Chen Z, Morgan SL, Xue X, Strickler HD, Fernandez-Romero JA, Burk R, Einstein MH. In vitro inhibition of human papillomavirus following use of a carrageenan-containing vaginal gel. Gynecol Oncol. 2016;143(2):313-8.

  125. Fernandez-Romero JA, Thorn M, Turville SG, Titchen K, Sudol K, Li J, Miller T, Robbiani M, Maguire RA, Buckheiy RW, Hartman TL, Phillips DM. Carrageenan/MIV-150 (PC-815): a combination microbicide. Sex Transm Dis. 2007;34(1):9-14.

  126. Singer R, Derby N, Rodriguez A, Kizima L, Kenney J, Aravantinou M, Chudolij A, Gettie A, Blanchard J, Lifson JD, Piatak Jr M, Fernandez-Romero JA, Zydowsky TM, Robbiani M. The non-nucleoside reverse transcriptase inhibitor MIV-150 in carrageenan gel prevents rectal transmission of simian/human immunodeficiency virus infection in macaques. J Virol. 2011;85(11):5504-12.

  127. Fernandez-Romero JA, Abraham CJ, Rodriguez A, Kizima L, Jean-Pierre N, Menon R, Begay O, Seidor S, Ford BE, Gil PI, Peters J, Katz D, Robbiani M, Zydowsky TM. Zinc acetate/carrageenan gels exhibit potent activity in vivo against high-dose herpes simplex virus 2 vaginal and rectal challenge. Antimicrob Agents Chemother. 2012;56(1):358-68.

  128. Kenney J, Rodriguez A, Kizima L, Seidor S, Menon R, Jean-Pierre N, Pugach P, Levendosky K, Derby N, Gettie A, Blanchard J, Piatak Jr M, Lifson JD, Paglini G, Zydowsky TM, Robbiani M, Fernandez Romero JA. A modified zinc acetate gel, a potential nonantiretroviral microbicide, is safe and effective against simian-human immunodeficiency virus and herpes simplex virus 2 infection in vivo. Antimicrob Agents Chemother. 2013;57(8):4001-9.

  129. Kizima L, Rodriguez A, Kenney J, Derby N, Mizenina O, Menon R, Seidor S, Zhang S, Levendosky K, Jean-Pierre N, Pugach P, Villegas G, Ford BE, Gettie A, Blanchard J, Piatak Jr M, Lifson JD, Paglini G, Teleshova N, Zydowsky TM, Robbiani M, Fernandez Romero JA. A potent combination microbicide that targets SHIV-RT, HSV-2 and HPV. PLoS One. 2014;9(4):e94547. doi:10.1371/journal.pone.0094547.

  130. Barnable P, Calenda G, Bonnaire T, Menon R, Levendosky K, Gettie A, Blanchard J, Cooney ML, Fernandez-Romero JA, Zydowsky TM, Teleshova N. MIV-150/zinc acetate gel inhibits cell-associated simian-human immunodeficiency virus reverse transcriptase infection in a macaque vaginal explant model. Antimicrob Agents Chemother. 2015;59(7):3829-37.

  131. Levendosky K, Mizenina O, Martinelli E, Jean-Pierre N, Kizima L, Rodriguez A, Kleinbeck K, Bonnaire T, Robbiani M, Zydowsky TM, O'Keefe BR, Fernandez-Romero JA. Griffithsin and carrageenan combination to target herpes simplex virus 2 and human papillomavirus. Antimicrob Agents Chemother. 2015;59(12):7290-8.

  132. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed. 2011;6:765-74.

  133. Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release. 2012;161(2):496-504.

  134. Calderon L, Harris R, Cordoba-Diaz M, Elorza M, Elorza B, Lenoir J, Adriaens E, Remon JP, Heras A, Cordoba-Diaz D. Nano and microparticulate chitosan-based systems for antiviral topical delivery. Eur J Pharm Sci. 2013;48(1):216-22.

  135. Donalisio M, Leone F, Civra A, Spagnolo R, Ozer O, Lembo D, Cavalli R. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics. 2018;10(2):46. doi:10.3390/pharmaceutics10020046.

  136. Huang ST, Du YZ, Yuan H, Zhang XG, Miao J, Cui FD, Hu FQ. Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle. Carbohydr Polym. 2011;83(4):1715-22.

  137. Sawdon AJ, Peng CA. Polymeric micelles for acyclovir drug delivery. Colloids Surf B Biointerf. 2014;122:738-45.

  138. Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target. 2010;18(5):381-8.

  139. Da Silva CF, Severino P, Martins F, Santana MHA, Souto EB. Didanosine-loaded chitosan microspheres optimized by surface-response methodology: a modified "Maximum Likelihood Classification" approach formulation for reverse transcriptase inhibitors. Biomed Pharmacother. 2015;70:46-52.

  140. Russo E, Gaglianone N, Baldassari S, Parodi B, Cafaggi S, Zibana C, Donalisio M, Cagno V, Lembo D, Caviglioli G. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles. Colloids Surf B Biointerfaces. 2014;118:117-25.

  141. Canepa C, Imperiale JC, Berini CA, Lewicki M, Sosnik A, Biglione MM. Development of a drug delivery system based on chitosan nanoparticles for oral administration of interferon-a. Biomacromolecules. 2017 Sep 8;18(10):3302-9.

  142. Mishra D, Jain N, Rajoriya V, Jain AK. Glycyrrhizin conjugated chitosan nanoparticles for hepatocyte-targeted delivery of lamivudine. J Pharm Pharmacol. 2014;66(8):1082-93.

  143. Li Q, Du YZ, Yuan H, Zhang XG, Miao J, Cui FD, Hu FQ. Synthesis of Lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur J Pharm Sci. 2010;41(3):498-507.

  144. Beaucourt S, Vignuzzi M. Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr Opin Virol. 2014;8:10-5.

  145. Li SD, Li PW, Yang ZM, Peng Z, Quan WY, Yang XH, Yang L, Dong JJ. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin. Drug Deliv. 2014;21(7):548-52.

  146. Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Evaluation of chitosan nanoformulations as potent anti-HIV therapeutic systems. Biochim Biophys Acta. 2014;1840(1):476-84.

  147. Yang L, Chen L, Zeng R, Li C, Qiao R, Hu L, Li Z. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: chitosan-O-isopropyl-5'-O-d4T monophosphate conjugate. Bioorg Med Chem. 2010;18(1):117-23.

  148. Meng J, Sturgis TF, Youan BBC. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44(1):57-67.

  149. Belletti D, Tosi G, Forni F, Gamberini MC, Baraldi C, Vandelli MA, Ruozi B. Chemico-physical investigation of tenofovir loaded polymeric nanoparticles. Int J Pharm. 2012;436(1):753-63.

  150. Wu D, Ensinas A, Verrier B, Primard C, Cuvillier A, Champier G, Paul S, Delair T. Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol Pharm. 2016;13(9):3279-91.

  151. Nayak UY, Gopal S, Mutalik S, Ranjith AK, Reddy MS, Gupta P, Udupa N. Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of Zidovudine. J Microencapsul. 2009;26(3):214-22.

  152. Dalpiaz A, Fogagnolo M, Ferraro L, Capuzzo A, Pavan B, Rassu G, Salis A, Giunchedi P, Gavini E. Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries. Antiviral Res. 2015;123:146-57.

  153. Yan JK, Wang YY, Qiu WY, Wu JY. Construction and characterization of nanosized curdlan sulfate/chitosan polyelectrolyte complex toward drug release of zidovudine. Carbohydrate polymers. 2017 Oct 15;174:209-16.

  154. Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett. 2013;8(1):93. doi:10.1186/1556-276X-8-93.

  155. Kurkov SV, Loftsson T. Cyclodextrins. Int J Pharm. 2013;453(1):167-80.

  156. Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013;65(9):1215-33.

  157. Cavalli R, Donalisio M, Civra A, Ferruti P, Ranucci E, Trotta F, Lembo D. Enhanced antiviral activity of Acyclovir loaded into P-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. J Control Release. 2009;137(2):116-22.

  158. Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, Vavia P, Trotta F, Cavalli R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy. Int J Pharm. 2013;443(1):262-72.

  159. Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA. Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol. 2008;20(6):684-9.

  160. Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JA. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol. 2009;182(6):3573-82.

  161. Alvarez FJ. The effect of chitin size, shape, source and purification method on immune recognition. Molecules. 2014;19(4):4433-51.

  162. Bueter CL, Lee CK, Rathinam VA, Healy GJ, Taron CH, Spechy CA, Levitz SM. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J Biol Chem. 2011;286(41):35447-55.

  163. Ichinohe T, Nagata N, Strong P, Tamura SI, Takahashi H, Ninomiya A, Imai M, Odagiri T, Tashiro M, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H. Prophylactic effects of chitin microparticles on highly pathogenic H5N1 influenza virus. J Med Virol. 2007;79(6):811-9.

  164. Baaten BJG, Clarke B, Strong P, Hou S. Nasal mucosal administration of chitin microparticles boosts innate immunity against influenza A virus in the local pulmonary tissue. Vaccine. 2010;28(25):4130-7.

  165. Ring0 E, Zhou Z, Olsen RE, Song SK. Use of chitin and krill in aquaculture-the effect on gut microbiota and the immune system: a review. Aquac Nutr. 2012;18(2):117-31.

  166. Kumar BN, Murthy HS, Patil P, Doddamani PL, Patil R. Enhanced immune response and resistance to white tail disease in chitindiet fed freshwater prawn, Macrobrachium rosenbergii. Aquac Rep. 2015;2:34-8.

  167. Strong P, inventor; Mucovax, Inc, assignee. Chitin microparticles and their medical uses. United States patent US 8551501 B2. 2013 Oct 8.

  168. MacKenzie NM, inventor; Muco Vax, Inc, applicant. Nutritional compositions comprising chitin microparticles. United States patent US 2016/0058041 A1. 2016 Mar 3.

  169. Bueter CL, Lee CK, Wang JP, Ostroff GR, Spechy CA, Levitz SM. Spectrum and mechanisms of inflammasome activation by chitosan. J Immunol. 2014;192(12):5943-51.

  170. Yue H, Wei W, Yue Z, Lv P, Wang L, Ma G, Su Z. Particle size affects the cellular response in macrophages. Eur J Pharm Sci. 2010;41(5):650-7.

  171. Pattani A, Patravale VB, Panicker L, Potdar PD. Immunological effects and membrane interactions of chitosan nanoparticles. Mol Pharm. 2009;6(2):345-52.

  172. Luzardo-Alvarez A, Blarer N, Peter K, Romero JF, Reymond C, Corradin G, Gander B. Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J Control Release. 2005;109(1):62-76.

  173. Petrilli V, Dostery C, Muruve DA, Tschopp J. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol. 2007;19(6):615-22.

  174. Dinarello CA. Interleukin-1p. Crit Care Med. 2005;33(12):S460-2.

  175. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol. 2011;89(6):873-91.

  176. Bellin D, Asai S, Delledonne M, Yoshioka H. Nitric oxide as a mediator for defense responses. Mol Plant Microbe Interact. 2013;26(3):271-7.

  177. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep. 2015;5:15195. doi:10.1038/srep15195.

  178. Soares E, Jesus S, Borges O. Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int J Pharm. 2018;535(1-2):261-71.

  179. Jesus S, Soares E, Borchard G, Borges O. Adjuvant activity of poly-s-caprolactone/chitosan nanoparticles characterized by mast cell activation and IFN-y and IL-17 production. Mol Pharmaceut. 2018;15(1):72-82.

  180. Urb M, Sheppard DC. The role of mast cells in the defence against pathogens. PLoS Pathog. 2012;8(4):e1002619. doi:10.1371/journal.ppat.1002619.

  181. Goodridge HS, Wolf AJ, Underhill DM. P-glucan recognition by the innate immune system. Immunol Rev. 2009;230(1):38-50.

  182. Ishibashi K, Nakagawa Y, Ohno N, Murai T. Particulate and soluble P-glucans from Candida albicans modulate cytokine release from human leukocytes. In: Young SH, Castranova V, editors. Toxicology of 1-3-beta-glucans. Boca Raton, FL: CRC Press; 2005. p. 161-77.

  183. Anas A, Lowman DW, Williams DL, Millen S, Pai SS, Sajeevan TP, Philip R, Singh ISB. Alkali insoluble glucan extracted from Acremonium diospyri is a more potent immunostimulant in the Indian white shrimp, Fenneropenaeus indicus than alkali soluble glucan. Aquac Res. 2009;40(11):1320-7.

  184. Mikkelsen MS, Jespersen BM, Mehlsen A, Engelsen SB, Frakisr H. Cereal P-glucan immune modulating activity depends on the polymer fine structure. Food Res Int. 2014;62:829-36.

  185. Bai N, Gu M, Zhang W, Xu W, Mai K. Effects of P-glucan derivatives on the immunity of white shrimp Litopenaeus vannamei and its resistance against white spot syndrome virus infection. Aquaculture. 2014;426-427:66-73.

  186. R0rstad G, Robertsen B, Raa J, inventors; AS Biotec Mackzymal, assignee. Process for preparing a yeast glucan. European patent EP 0466037 B1. 1997 Dec 3.

  187. Engstad R, Kortner F, Robertsen B, R0rstad G, inventors; Biotec Pharmacon Asa, assignee. Enzyme treatment of glucans. European patent EP 0759089 B1. 2002 Aug 28.

  188. Siwicki AK, Zak^s Z, Terech-Majewska E, Kazun K, Lepa A, Glqbski E. Dietary Macrogard reduces Aeromonas hydrophila mortality in tench (Tinca tinca) through the activation of cellular and humoral defence mechanisms. Rev Fish Biol Fisher. 2010;20(3):435-9.

  189. Li P, Wen Q, Gatlin DM. Dose-dependent influences of dietary P-1, 3-glucan on innate immunity and disease resistance of hybrid striped bass Morone chrysops x Morone saxatilis. Aquac Res. 2009;40(14):1578-84.

  190. Sajeevan TP, Philip R, Singh IB. Dose/frequency: a critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeus indicus. Aquaculture. 2009;287(3):248-52.

  191. Wilson W, Lowman D, Antony SP, Puthumana J, Singh IB, Philip R. Immune gene expression profile of Penaeus monodon in response to marine yeast glucan application and white spot syndrome virus challenge. Fish Shellfish Immunol. 2015;43(2):346-56.

  192. Samuelsen ABC, Schrezenmeir J, Knutsen SH. Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res. 2014;58(1):183-93.

  193. Auinger A, Riede L, Bothe G, Busch R, Gruenwald J. Yeast (1, 3)-(1, 6)-beta-glucan helps to maintain the body's defence against pathogens: a double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur J Nutr. 2013;52(8):1913-8.

  194. Stier H' Ebbeskotte V' Gruenwald J. Immune-modulatory effects of dietary yeast beta-1' 3/1' 6-D-glucan. Nutr J. 2014;13(1):38. doi:10.1186/1475-2891-13-38.

  195. Fuller R, Buty H, Noakes PS, Kenyon J, Yam TS, Calder PC. Influence of yeast-derived 1, 3/1, 6 glucopolysaccharide on circulating cytokines and chemokines with respect to upper respiratory tract infections. Nutrition. 2012;28(6):665-9.

  196. Talbott SM' Talbott JA. Baker's yeast beta-glucan supplement reduces upper respiratory symptoms and improves mood state in stressed women. J Am Coll Nutr. 2012;31(4):295-300.

  197. Bergendiova K, Tibenska E, Majtan J. Pleuran (P-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur J Appl Physiol. 2011;111(9):2033-40.

  198. Jesenak M, Majtan J, Rennerova Z, Kyselovic J, Banovcin P, Hrubisko M. Immunomodulatory effect of pleuran (P-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int Immunopharmacol. 2013;15(2):395-9.

  199. Cooper PD' Petrovsky N. Delta inulin: a novel' immunologically active' stable packing structure comprising P-D-[2-1] poly(fructo-furanosyl) a-D-glucose polymers. Glycobiology. 2011;21(5):595-606.

  200. Petrovsky N, Cooper PD. Advax, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine. 2015;33(44):5920-6.

  201. Saade F, Honda-Okubo Y, Trec S, Petrovsky N. A novel hepatitis B vaccine containing Advax, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine. 2013;31(15):1999-2007.

  202. Murugappan S, Frijlink HW, Petrovsky N, Hinrichs WL. Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant. Eur J Pharm Sci. 2015;66, 118-22.

  203. Larena M, Prow NA, Hall RA, Petrovsky N, Lobigs M. JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8+ T cells and preexposure neutralizing antibody. J Virol. 2013;87(8):4395-402.

  204. Bielefeldt-Ohmann H, Prow NA, Wang W, Tan CS, Coyle M, Douma A, Hobson-Peters J, Kidd L, Hall RA, Petrovsky N. Safety and immunogenicity of a delta inulin-adjuvanted inactivated Japanese encephalitis virus vaccine in pregnant mares and foals. Vet Res. 2014;45:130. doi:10.1186/s13567-014-0130-7.

  205. Honda-Okubo Y, Saade F, Petrovsky N. Advax, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine. 2012;30(36):5373-81.

  206. Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine. 2015a;33(38):4892-900.

  207. Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CTK, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced virus protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015b;89(6):2995-3007.

  208. Gordon DL, Sajkov D, Woodman RJ, Honda-Okubo Y, Cox MM, Heinzel S, Petrovsky N. Randomized clinical trial of immunogenicity and safety of a recombinant H1N1/2009 pandemic influenza vaccine containing Advax polysaccharide adjuvant. Vaccine. 2012;30(36):5407-16.

  209. Gordon DL, Kelley P, Heinzel S, Cooper P, Petrovsky N. Immunogenicity and safety of Advax, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled Phase 1 study. Vaccine. 2014;32(48):6469-77.

  210. Gordon DL, Sajkov D, Honda-Okubo Y, Wilks SH, Aban M, Barr IG, Petrovsky N. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax delta inulin adjuvant. Vaccine. 2016;34(33):3780-6.

  211. Da Silva CA, Pochard P, Lee CG, Elias JA. Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med. 2010;182(12):1482-91.

  212. Wen ZS, Xu YL, Zou XT, Xu ZR. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs. 2011;9(6):1038-55.

  213. Izaguirre-Hernandez IY, Mellado-Sanchez G, Mondragon-Vasquez K, Thomas-Dupont P, Sanchez-Vargas LA, Hernandez-Flores KG, Mendoza-Barrera C, Altuzar V, Cedillo-Barron L, Vivanco-Cid H. Non-conjugated chitosan-based nanoparticles to proteic antigens elicit similar humoral immune responses to those obtained with alum. J Nanosci Nanotechnol. 2017;17(1):846-52.

  214. Yang J, Shim SM, Nguyen TQ, Kim EH, Kim K, Lim YT, Sung MH, Webby R, Poo H. Poly-y-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic crossreactivity of H1N1 pandemic influenza vaccine. Sci Rep. 2017;7:44839. doi:10.1038/srep44839.

  215. Pathinayake PS, Chathuranga WG, Lee HC, Chowdhury MY, Sung MH, Lee JS, Kim CJ. Inactivated enterovirus 71 with poly-y-glutamic acid/Chitosan nano particles (PC NPs) induces high cellular and humoral immune responses in BALB/c mice. Archives Virol. 2018;163:2073-83.

  216. Oleszycka E, Lavelle EC. Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol. 2014;28:1-5.

  217. Petrovsky N, Cooper PD. Carbohydrate-based immune adjuvants. Expert Rev Vaccines. 2011;10(4): 523-37.

  218. Ara Y, Saito T, Takagi T, Hagiwara E, Miyagi Y, Sugiyama M, Kawamoto S, Ishii N, Yoshida T, Hanashi D, Koshino T, Okada H, Okuda K. Zymosan enhances the immune response to DNA vaccine for human immunodeficiency virus type-1 through the activation of complement system. Immunology. 2001;103(1):98-105.

  219. Ainai A, Ichinohe T, Tamura SI, Kurata T, Sata T, Tashiro M, Hasegawa H. Zymosan enhances the mucosal adjuvant activity of poly (I: C) in a nasal influenza vaccine. J Med Virol. 2010;82(3):476-84.

  220. Pence BD, Hester SN, Donovan SM, Woods JA. Dietary whole glucan particles do not affect antibody or cell-mediated immune responses to influenza virus vaccination in mice. Immunol Invest. 2012;41(3):275-89.

  221. Hester SN, Comstock SS, Thorum SC, Monaco MH, Pence BD, Woods JA, Donovan SM. Intestinal and systemic immune development and response to vaccination are unaffected by dietary (1,3/1,6)-P-D- glucan supplementation in neonatal piglets. Clin Vaccine Immunol. 2012;19(9):1499-508.

  222. Amidi M, Mastrobattista E, Jiskooy W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59-82.

  223. Islam MA, Firdous J, Choi YJ, Yun CH, Cho CS. Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review. Int J Nanomed. 2012;7:6077-93.

  224. De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedy SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today. 2011;16(13):569-82.

  225. Burgdorf S, Kurts C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol. 2008;20(1):89-95.

  226. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095-107.

  227. Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm. 2008;354(1):235-41.

  228. Sawaengsak C, Mori Y, Yamanishi K, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS Pharm Sci Tech. 2014;15(2):317-25.

  229. Huang HN, Li TL, Chan YL, Chen CL, Wu CJ. Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus. Biomaterials. 2009;30(30):6017-25.

  230. Zhao K, Zhang Y, Zhang X, Li W, Shi C, Guo C, Dai C, Chen Q, Jin Z, Zhao Y, Cui H, Wang Y. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomed. 2014;9:389-402.

  231. Boyoglu S, Vig K, Pillai S, Rangari V, Dennis VA, Khazi F, Singh SR. Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus. Nanomed-Nanotechnol Biol Med. 2009;5(4):463-72.

  232. Zhao K, Shi X, Zhao Y, Wei H, Sun Q, Huang T, Zhang X, Wang Y. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine. 2011;29(47):8549-56.

  233. Rajeshkumar S, Venkatesan C, Sarathi M, Sarathbabu V, Thomas J, Anver Basha K, Sahul Hameed AS. Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol. 2009;26(3):429-37.

  234. Zheng F, Liu H, Sun X, Zhang Y, Zhang B, Teng Z, Hou Y, Wang B. Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Scophthalmus maximus). Aquaculture. 2016;452:263-71.

  235. Vimal S, Majeed SA, Nambi KSN, Madan N, Farook MA, Venkatesan C, Taju G, Venu S, Subburaj R, Thirunavukkarasu AR, Sahul Hameed AS. Delivery of DNA vaccine using chitosan-tripolyphosphate (CS/TPP) nanoparticles in Asian sea bass, Lates calcarifer (Bloch, 1790) for protection against noda-virus infection. Aquaculture. 2014;420:240-6.

  236. Ramya VL, Sharma R, Gireesh-Babu P, Patchala SR, Rather A, Nandanpawar PC, Eswaran S. Development of chitosan conjugated DNA vaccine against nodavirus in Macrobrachium rosenbergii (De Man, 1879). J Fish Dis. 2014;37(9):815-24.

  237. Sawaengsak C, Mori Y, Yamanishi K, Srimanote P, Chaicumpa W, Mitrevej A, Sinchaipanid N. Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int J Pharm. 2014;473(1):113-25.

  238. Prego C, Paolicelli P, D^az B, Vicente S, Sanchez A, Gonzalez-Fernandez A, Alonso MJ. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine. 2010;28(14):2607-14.

  239. Zhao K, Chen G, Shi XM, Gao TT, Li W, Zhao Y, Zhang FQ, Wu J, Cui X, Wang YF. Preparation and efficacy of a live Newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PLoS One. 2012;7(12):e53314. doi:10.1371/journal.pone.0053314.

  240. Dhakal S, Renu S, Ghimire S, Lakshmanappa YS, Hogshead BT, Feliciano-Ruiz N, Lu F, HogenEsch H, Krakowka S, Lee CW, Renukaradhya GJ. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front Immunol. 2018;9:934. doi: 10.3389/fimmu.2018.00934.

  241. Lugade AA, Bharali DJ, Pradhan V, Elkin G, Mousa SA, Thanavala Y. Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity. Nanomed-Nanotechnol Biol Med. 2013;9(7):923-34.

  242. Hunsawong T, Sunintaboon P, Wariy S, Thaisomboonsuk B, Jarman RG, Yoon IK, Ubol S, Fernandez S. A novel dengue virus serotype-2 nanovaccine induces robust humoral and cell-mediated immunity in mice. Vaccine. 2015;33(14):1702-10.

  243. Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, Jiskooy W. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine. 2007;5(1):144-53.

  244. Subbiah R, Ramalingam P, Ramasundaram S, Kim DY, Park K, Ramasamy MK, Choi KJ. N, N, N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym. 2012;89(4):1289-97.

  245. Dai C, Kang H, Yang W, Sun J, Liu C, Cheng G, Rong G, Wang X, Wang X, Jin Z, Zhao K. O-2'-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr Polym. 2015;130:280-9.

  246. Zhao K, Li S, Li W, Yu L, Duan X, Han J, Wang X, Jin Z. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv. 2017;24(1): 1574-86.

  247. Wang YQ, Wu J, Fan QZ, Zhou M, Yue ZG, Ma GH, Su ZG. Novel vaccine delivery system induces robust humoral and cellular immune responses based on multiple mechanisms. Adv Healthc Mater. 2014;3(5):670-81.

  248. Liu Q, Zheng X, Zhang C, Shao X, Zhang X, Zhang Q, Jiang X. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration. J Med Virol. 2015;87(11):1807-15.

  249. Jiang L, Qian F, He X, Wang F, Ren D, He Y, Li K, Sun S, Yin C. Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. J Gene Med. 2007;9(4):253-64.

  250. Moon HJ, Lee JS, Talactac MR, Chowdhury MYE, Kim JH, Park ME, Choi YK, Sung MH, Kim CJ. Mucosal immunization with recombinant influenza hemagglutinin protein and poly gamma-glutamate/chitosan nanoparticles induces protection against highly pathogenic influenza A virus. Vet Microbiol. 2012;160(3):277-89.

  251. Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur J Pharm Sci. 2007;32(4):278-90.

  252. Borges O, Cordeiro-da-Silva A, Tavares J, Santarem N, de Sousa A, Borchard G, Junginger HE. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm. 2008;69(2):405-16.

  253. Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvantfor hepatitis B surface antigen. Int Immunopharmacol. 2008;8(13-14):1773-80.

  254. Biswas S, Chattopadhyay M, Sen KK, Saha MK. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym. 2015;121:403-10.

  255. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62(1):12-27.

  256. Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189-200.

  257. Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, Powell EN, Rondeau D, Saksida SM. Infectious diseases affect marine fisheries and aquaculture economics. Annu Rev Mar Sci. 2015;7:471-96.

  258. Plant KP, LaPatra SE. Advances in fish vaccine delivery. Dev Comp Immunol. 2011;35(12):1256-62.

  259. Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:435873. doi:10.1155/2012/435873.

  260. Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. Cholera Toxin B: one subunit with many pharma-ceutical applications. Toxins. 2015;7(3):974-96.

  261. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10(4):499-511.

  262. McAleer JP, Vella AT. Understanding how lipopolysaccharide impacts CD4 T-cell immunity. Crit Rev Immunol. 2008;28(4):281-99.

  263. Hagenaars N, Mastrobattista E, Verheul RJ, Mooren I, Glansbeek HL, Heldens JG, van den Bosch H, Jiskooy W. Physicochemical and immunological characterization of N, N, N-trimethyl chitosan-coated whole inactivated influenza virus vaccine for intranasal administration. Pharm Res. 2009;26(6):1353-64.

  264. Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slutter B, Amorij JP, Jiskooy W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physico-chemical and immunological characteristics. Vaccine. 2012;30(36):5341-8.

  265. Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm. 2013;85(3):550-9.

  266. Gupta NK, Tomar P, Sharma V, Dixiy VK. Development and characterization of chitosan coated poly-(e-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine. 2011;29(48):9026-37.

  267. Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine. 2008;26(18):2225-33.

  268. Amin M, Jaafari MR, Tafaghodi M. Impact of chitosan coating of anionic liposomes on clearance rate, mucosal and systemic immune responses following nasal administration in rabbits. Colloids Surf B Biointerf. 2009;74(1):225-9.

  269. van der Maaden K, Sekerdag E, Schipper P, Kersten G, Jiskooy W, Bouwstra J. Layer-by-layer assembly of inactivated poliovirus and N-trimethyl chitosan on pH-sensitive microneedles for dermal vaccination. Langmuir. 2015;31(31):8654-60.

  270. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68.

  271. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83-99.

  272. Andersson M, inventor; Viscogel, AB, assignee. Chitosan composition. United States patent US 8703924 B2. 2014 Apr 22.

  273. Neimert-Andersson T, Hallgren AC, Andersson M, Langeback J, Zettergren L, Nilsen-Nygaard J, Dragey KI, van Hage M, Lindberg A, Gafvelin G, Gronlund H. Improved immune responses in mice using the novel chitosan adjuvant ViscoGel, with a Haemophilus influenzae type b glycoconjugate vaccine. Vaccine. 2011;29(48):8965-73.

  274. Neimert-Andersson T, Binnmyr J, Enoksson M, Langeback J, Zettergren L, Hallgren AC, Franzen H, Enoksson SL, Lafolie P, Lindberg A, Al-Tawil N, Andersson M, Singer P, Gronlund H, Gafvelin G. Evaluation of safety and efficacy as an adjuvant for the chitosan-based vaccine delivery vehicle ViscoGel in a single-blind randomised phase I/IIa clinical trial. Vaccine. 2014;32(45): 5967-74.

  275. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg APJ. Nanoparticle vaccines. Vaccine. 2014;32(3):327-37.

  276. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym. 2015;117:524-36.

  277. Gordon S, Saupe A, McBurney W, Rades T, Hook S. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J Pharm Pharmacol. 2008;60(12):1591-600.

  278. Wu Y, Wei W, Zhou M, Wang Y, Wu J, Ma G, Su Z. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials. 2012;33(7):2351-60.

  279. Wu Y, Wu S, Hou L, Wei W, Zhou M, Su Z, Wu J, Chen W, Ma G. Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery. Eur J Pharm Biopharm. 2012;81(3):486-97.

  280. Wu J, Fan Q, Xia Y, Ma G. Uniform-sized particles in biomedical field prepared by membrane emulsification technique. Chem Eng Sci. 2015;12:85-97.

  281. Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials. 2013;34(12):3077-86.

  282. Chen MC, Lai KY, Ling MH, Lin CW. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. 2018;65:66-75.

  283. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1):1-19.

  284. Muralidharan P, Malapiy M, Mallory E, Hayes D, Mansour HM. Inhalable nanoparticulate powders for respiratory delivery. Nanomed-Nanotechnol Biol Med. 2015;11(5):1189-99.

  285. Sou T, Meeusen EN, De Veer M, Morton DA, Kaminskas LM, McIntosh MP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011;29(4):191-8.

  286. Huang J, Garmise RJ, Crowder TM, Mar K, Hwang CR, Hickey AJ, Mikszta JA, Sullivan VJ. A novel dry powder influenza vaccine and intranasal delivery technology: induction of systemic and mucosal immune responses in rats. Vaccine. 2004;23(6):794-801.

  287. Huang J, Mikszta JA, Ferriter MS, Jiang G, Harvey NG, Dyas B, Roy CJ, Ulrich RG, Sullivan VJ. Intranasal administration of dry powder anthrax vaccine provides protection against lethal aerosol spore challenge. Hum Vaccines. 2007;3(3):90-3.

  288. Dehghan S, Tafassoti Kheiri M, Tabatabaiean M, Darzi S, Tafaghodi M. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization. Arch Pharm Res. 2013;36(8):981-92.

  289. Dehghan S, Tafaghodi M, Bolourieh T, Mazaheri V, Torabi A, Abnous K, Tavassoti Kheiri M. Rabbit nasal immunization against influenza by dry-powder form of chitosan nanospheres encapsulated with influenza whole virus and adjuvants. Int J Pharm. 2014;475(1):1-8.

  290. ScherlieB, R, Monckedieck M, Young K, Trows S, Buske S, Hook S. First in vivo evaluation of particulate nasal dry powder vaccine formulations containing ovalbumin in mice. Int J Pharm. 2015;479(2):408-15.

  291. Klas SD, Petrie CR, Warwood SJ, Williams MS, Olds CL, Stenz JP, Cheff AM, Hinchcliffe M, Richardson C, Wimer S. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge. Vaccine. 2008;26(43):5494-502.

  292. El-Kamary SS, Pasetti MF, Mendelman PM, Frey SE, Bernstein DI, Treanor JJ, Ferreira J, Chen WH, Sublety R, Richardson C, Bargatze RF, Sztein MB, Tackey CO. Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J Infect Dis. 2010;202(11):1649-58.

  293. Atmar RL, Bernstein DI, Harro CD, Al-Ibrahim MS, ChenWH, Ferreira J, Estes MK, Graham DY, Opekun AR, Richardson C, Mendelman PM. Norovirus vaccine against experimental human Norwalk virus illness. N Engl J Med. 2011;365(23):2178-87.

  294. Ramirez K, Wahid R, Richardson C, Bargatze RF, El-Kamary SS, Sztein MB, Pasetti MF. Intranasal vaccination with an adjuvanted Norwalk virus-like particle vaccine elicits antigen-specific B memory responses in human adult volunteers. Clin Immunol. 2012;144(2):98-108.

  295. Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008;65(20):3231-40.

  296. Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev. 2012;64:194-205.

  297. Tian JY, Sun XQ, Chen XG. Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder. Fish Shellfish Immunol. 2008;24(5):592-9.

  298. Ballesteros NA, Rodriguez Saint-Jean S, Perez-Prieto SI. Food pellets as an effective delivery method for a DNA vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish Shellfish Immunol. 2014;37(2):220-8.

  299. Ballesteros NA, Alonso M, Rodriguez Saint-Jean S, Perez-Prieto SI. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss). Fish Shellfish Immunol. 2015;45(2):877-88.

  300. Rodrigues AP, Hirsch D, Figueiredo HCP, Logato PVR, Moraes AM. Production and characterisation of alginate microparticles incorporating Aeromonas hydrophila designed for fish oral vaccination. Process Biochem. 2006;41(3):638-43.

  301. Boesteanu AC, Babu NS, Wheatley M, Papazoglou ES, Katsikis PD. Biopolymer encapsulated live influenza virus as a universal CD8+ T cell vaccine against influenza virus. Vaccine. 2011;29(2):314-22.

  302. Soema PC, van Riey E, Kersten G, Amorij JP. Development of cross-protective influenza A vaccines based on cellular responses. Front Immunol. 2015;6:237. doi:10.3389/fimmu.2015.00237.

  303. Li P, Luo Z, Liu P, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. Bioreducible alginate-poly (ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release. 2013;168(3):271-9.

  304. Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305-22.

  305. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural poly-saccharides for drug delivery. Int J Biol Macromol. 2014;64:353-67.

  306. Behera T, Swain P. Antigen encapsulated alginate-coated chitosan microspheres stimulate both innate and adaptive immune responses in fish through oral immunization. Aquac Int. 2014;22(2):673-88.

  307. Shukla A, Mishra V, Bhoop BS, Katare OP. Alginate coated chitosan microparticles mediated oral delivery of diphtheria toxoid. (Part A). Systematic optimization, development and characterization. Int J Pharm. 2015;495(1):220-33.

  308. Li X, Kong X, Shi S, Zheng X, Guo G, Wei Y, Qian Z. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol. 2008;8:89. doi:10.1186/1472-6750-8-89.

  309. Guo R, Chen L, Cai S, Liu Z, Zhu Y, Xue Zhang Y. Novel alginate coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of BSA. J Mater Sci Mater Med. 2013;24(9):2093-100.

  310. Suksamran T, Ngawhirunpay T, Rojanarata T, Sajomsang W, Pitaksuteepong T, Opanasopiy P. Methylated N-(4-N, N-dimethylaminocinnamyl) chitosan-coated electrospray OVA-loaded microparticles for oral vaccination. Int J Pharm. 2013;448(1):19-27.

  311. Zheng X, Huang Y, Zheng C, Dong S, Liang W. Alginate-chitosan-PLGA composite microspheres enabling single-shot hepatitis B vaccination. AAPS J. 2010;12(4):519-24.

  312. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377-97.

  313. Zheng CH, Liang WQ, Li F, Zhang YP, Fang WJ. Optimization and characterization of chitosan-coated alginate microcapsules containing albumin. Pharmazie. 2005;60(6):434-8.

  314. Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266-77.

  315. Ni Y, Yates KM, Zarzycki R, inventors; Carrington Laboratories, Inc, assignee. Aloe pectins. United States patent 5929051. 1999 Jul 27.

  316. Ni Y, Yates KM, Zarzycki R, inventors; Nanotherapeutics, Inc, assignee. High molecular weight, low methoxyl pectins, and their production and uses. United States patent US 7691986 B2. 2010 Apr 6.

  317. Ni Y, Yates KM, inventors; Carrington Laboratories, Inc, assignee. In situ gel formation of pectin. United States patent US 6777000 B2. 2004 Aug 17.

  318. Ni Y, Yates KM, inventors; Carrington Laboratories, Inc, assignee. Delivery of physiological agents with in-situ gels comprising anionic polysaccharides. United States patent US 7494669 B2. 2009 Feb 24.

  319. Velasquez LS, Shira S, Berta AN, Kilbourne J, Medi BM, Tizard I, Ni Y, Arntzen CJ, Herbst-Kralovetz MM. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling' dry powder vaccine. Vaccine. 2011;29(32):5221-31.

  320. Springer MJ, Ni Y, Finger-Baker I, Ball JP, Hahn J, DiMarco AV, Kobs D, Horne B, Talton JD, Cobb RR. Preclinical dose-ranging studies of a novel dry powder norovirus vaccine formulation. Vaccine. 2016;34(12):1452-8.

  321. Berner VK, Sura ME, Hunter Jr KW. Conjugation of protein antigen to microparticulate P-glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl Microbiol Biotechnol. 2008;80(6):1053-61.

  322. Berner VK, duPre SA, Redelman D, Hunter KW. Microparticulate P-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro. Cell Immunol. 2015;298(1):104-14.

  323. Huang H, Ostroff GR, Lee CK, Spechy CA, Levitz SM. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded P-glucan particles. mBio. 2010;1(3):e00164-10. doi:10.1128/mBio.00164-10.

  324. Huang H, Ostroff GR, Lee CK, Spechy CA, Levitz SM. Characterization and optimization of the glucan particle-based vaccine platform. Clin Vaccine Immunol. 2013;20(10):1585-91.

  325. De Smet R, Demoor T, Verschuere S, Dullaers M, Ostroff GR, Leclercq G, Allais L, Pilette C, Diendonck M' De Geesy BG' Cuvelier CA. P-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J Control Release. 2013;172(3):671-8.

  326. Zhang S, Huang S, Lu L, Song X, Li P, Wang F. Curdlan sulfate-O-linked quaternized chitosan nanoparticles: potential adjuvants to improve the immunogenicity of exogenous antigens via intranasal vaccination. Int J Nanomed. 2018;13:2377-94.

  327. Soares E, Jesus S, Borges O. Chitosan: P-glucan particles as a new adjuvant for the hepatitis B antigen. Eur J Pharm Biopharm. 2018;131:33-43.

  328. Perez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Starke. 2010;62(8):389-420.

  329. Kim HY, Park SS, Lim ST. Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B Biointerf. 2015;126:607-20.

  330. Guillen D, Moreno-Mendieta S, Perez R, Espitia C, Sanchez S, Rodriguez-Sanoja R. Starch granules as a vehicle for the oral administration of immobilized antigens. Carbohydr Polym. 2014;112:210-5.

  331. Coucke D, Schotsaery M, Libery C, Pringels E, Vervaey C, Foreman P, Saelens X, Remon JP. Spraydried powders of starch and crosslinked poly (acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine. Vaccine. 2009;27(8):1279-86.

  332. Wikingsson LD, Sjoholm I. Polyacryl starch microparticles as adjuvant in oral immunisation, inducing mucosal and systemic immune responses in mice. Vaccine. 2002;20(27):3355-63.

  333. Balasse E, Odoy J, Gatouillay G, Andry MC, Madouley C. Enhanced immune response induced by BSA loaded in hydroxyethylstarch microparticles. Int J Pharm. 2008;353(1):131-8.

  334. Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2(11):758-78.

  335. Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym. 2015;132:311-22.

  336. Huang C, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, Vervaet C, Coenye T, Verstraelen H, Temmerman M, Demeester J, De Smedt SC. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33(3):962-9.

  337. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227-37.

  338. Gill HS, Soderholm J, Prausnitz MR, Sallberg M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 2010;17(6):811-4.

  339. Kines RC, Zarnitsyn V, Johnson TR, Pang YYS, Corbety KS, Nicewonger JD, Gangopadhyay A, Chen M, Liu J, Prausnitz MR, Schiller JT, Graham BS. Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles. PLoS One. 2015;10(3):e0120797. doi:10.1371/journal.pone.0120797.

  340. Quan FS, Kim YC, Yoo DG, Compans RW, Prausnitz MR, Kang SM. Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin. PLoS One. 2009;4(9):e7152. doi:10.1371/journal.pone.0007152.

  341. Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release. 2010;142(2):187-95.

  342. Shin JH, Park JK, Lee DH, Quan FS, Song CS, Kim YC. Microneedle vaccination elicits superior protection and antibody response over intranasal vaccination against swine-origin influenza A (H1N1) in mice. PLoS One. 2015;10(6):e0130684. doi:10.1371/journal.pone.0130684.

  343. Quan FS, Kim YC, Vunnava A, Yoo DG, Song JM, Prausnitz MR, Compans RW, Kang SM. Intradermal vaccination with influenza virus-like particles by using microneedles induces protection superior to that with intramuscular immunization. J Virol. 2010;84(15):7760-9.

  344. Kim YC, Song JM, Lipatov AS, Choi SO, Lee JW, Donis RO, Compans RW, Kang SM, Prausnitz MR. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm. 2012;81(2):239-47.

  345. Weldon WC, Martin MP, Zarnitsyn V, Wang B, Koutsonanos D, Skountzou I, Prausnitz MR, Compans RW. Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces imroved protective immunity. Clin Vaccine Immunol. 2011;18(4):647-54.

  346. Song Y, Zhou Y, Chen L. Cellulose-based polyelectrolyte complex nanoparticles for DNA vaccine delivery. Biomater Sci. 2014;2(10):1440-9.

  347. Sun G, Mao JJ. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine. 2012;7(11):1771-84.

  348. Banerjee A, Bandopadhyay R. Use of dextran nanoparticle: A paradigm shift in bacterial exopolysaccharide based biomedical applications. Int J Biol Macromol. 2016;87:295-301.

  349. Schroder U, Stahl A. Crystallized dextran nanospheres with entrapped antigen and their use as adjuvants. J Immunol Methods. 1984;70(1):127-32.

  350. Shen L, Higuchi T, Tubbe I, Voltz N, Krummen M, Pektor S, Montermann E, Rausch K, Schmidy M, Schild H, Grabbe S, Bros M. A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo. PLoS One. 2013;8(12):e80904. doi:10.1371/journal.pone.0080904.

  351. Tabassi SAS, Tafaghodi M, Jaafari MR. Induction of high antitoxin titers against tetanus toxoid in rabbits by intranasal immunization with dextran microspheres. Int J Pharm. 2008;360(1):12-7.

  352. De Koker S, De Geest BG, Singh SK, De Rycke R, Naessens T, Van Kooyk Y, Demeester J, De Smedt SC, Grooten J. Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated Antigens. Angew Chem. 2009;121(45): 8637-41.

  353. De Geest BG, Willart MA, Hammad H, Lambrecht BN, Pollard C, Bogaert P, De Filette M, Saelens X, Vervaet C, Remon JP, Grooten J, De Koker S. Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. ACS Nano. 2012;6(3):2136-49.

  354. De Smet R, Verschuere S, Allais L, Leclercq G, Dierendonck M, De Geest BG, Van Driessche I, Demoor T, Cuvelier CA. Spray-dried polyelectrolyte microparticles in oral antigen delivery: stability biocompatibility and cellular uptake. Biomacromolecules. 2014;15(6):2301-9.

  355. De Koker S, Fierens K, Dierendonck M, De Rycke R, Lambrecht BN, Grooten J, Remon JP, De Geest BG. Nanoporous polyelectrolyte vaccine microcarriers. A formulation platform for enhancing humoral and cellular immune responses. J Control Release. 2014;195:99-109.

  356. Delair T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nano-carriers of bioactive molecules. Eur J Pharm Biopharm. 2011;78(1):10-8.

  357. Drogoz A, Munier S, Verrier B, David L, Domard A, Delair T. Towards biocompatible vaccine delivery systems: interactions of colloidal PECs based on polysaccharides with HIV-1 p24 antigen. Biomacromolecules. 2008;9(2):583-91.

  358. Ramesh Kumar D, Elumalai R, Raichur AM, Sanjuktha M, Rajan JJ, Alavandi SV, Vijayan KK, Poornima M, Santiago TC. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulphate nanocapsule delivery system in Penaeus monodon post-larvae. Antiviral Res. 2016;131:124-30.

  359. Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS, Browdy CL, Warr GW. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virol. 2005;79(21):13561-71.

  360. Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JM. Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc. 2008;130(32):10494-5.

  361. Bachelder EM, Beaudette TT, Broaders KE, Frechet JM, Albrecht MT, Mateczun AJ, Ainslie KM, Pesce JT, Keane-Myers AM. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol Pharm. 2010;7(3):826-35.

  362. Schully KL, Bell MG, Prouty AM, Gallovic MD, Gautam S, Peine KJ, Sharma S, Bachelder EM, Pesce JT, Elberson MA, Ainslie KM, Keane-Myers A. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis. Int J Pharm. 2015;495(2):849-61.

  363. Khan W, Hosseinkhani H, Ickowicz D, Hong PD, Yu DS, Domb AJ. Polysaccharide gene transfection agents. Acta Biomater. 2012;8(12):4224-32.

  364. Firouzamandi M, Moeini H, Hosseini SD, Bejo MH, Omar AR, Mehrbod P, El Zowalaty ME, Webster TJ, Ideris A. Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease. Int J Nanomed. 2016;11:259-67.

  365. Li D, Kordalivand N, Fransen MF, Ossendorp F, Raemdonck K, Vermonden T, Hennink WE, van Nostrum CF. Reduction-sensitive dextran nanogels aimed for intracellular delivery of antigens. Adv Funct Mater. 2015;25(20):2993-3003.

  366. Singh RS, Kaur N, Kennedy JF. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr Polym. 2015;123:190-207.

  367. Tahara Y, Akiyoshi K. Current advances in self-assembled nanogel delivery systems for immuno-therapy. Adv Drug Deliv Rev. 2015;95:65-76.

  368. Kageyama S, Wada H, Muro K, Niwa Y, Ueda S, Miyata H, Takiguchi S, Sugino SH, Miyahara Y, Ikeda H, Imai N, Sato E, Yamada T, Osako M, Ohnishi M, Harada N, Hishida T, Doki Y, Shiku H. Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients. J Transl Med. 2013;11(1):1-10.

  369. Alhaique F, Matricardi P, Di Meo C, Coviello T, Montanari E. Polysaccharide-based self-assembling nanohydrogels: an overview on 25-years research on pullulan. J Drug Deliv Sci Technol. 2015;30:300-9.

  370. Nagatomo D, Taniai M, Ariyasu H, Taniguchi M, Aga M, Ariyasu T, Ohta T, Fukuda S. Cholesteryl pullulan encapsulated TNF-a nanoparticles are an effective mucosal vaccine adjuvant against influnza virus. Biomed Res Int. 2015;2015:471468. doi:org/10.1155/2015/471468.

  371. Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9(7):7081-92.

  372. Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev. 2016;97:204-36.

  373. Verheul RJ, Slutter B, Bal SM, Bouwstra JA, Jiskooy W, Hennink WE. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J Control Release. 2011;156(1):46-52.

  374. Liu Y, Wang FQ, Shah Z, Cheng XJ, Kong M, Feng C, Chen XG. Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids Surf B Biointerf. 2016;145:492-501.

  375. Liu L, Cao F, Liu X, Wang H, Zhang C, Sun H, Wang C, Leng X, Song C, Kong D, Ma G. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses. ACS Appl Mater Interf. 2016;8(19):11969-79.

  376. Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL. Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A. 2010;92(4):1265-72.

  377. Friedland BA, Hoesley CJ, Plagianos M, Hoskin E, Zhang S, Teleshova N, Alami M, Novak L, Kleinbeck KR, Katzen LL, Zydowsky TM, Fernandez-Romero JA, Creasy GW. A first-in-human trial of MIV-150 and zinc acetate co-formulated in a carrageenan gel: safety pharmacokinetics, acceptability adherence and pharmacodynamics. J Acquir Immune Defic Syndr. 2016;73(5):489-96.

  378. Petit J, Wiegertjes GF. Long-lived effects of administering P-glucans: indications for trained immunity in fish. Dev Comp Immunol. 2016;64:93-102.

  379. EFSA (European Food Safety Authority) Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to Yestimun and immune responses pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2010;8(5):1607. doi:10.2903/j. efsa.2010.1607.

  380. EFSA (European Food Safety Authority) Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of a health claim related to Yestimun and defence against pathogens in the upper respiratory tract pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2013;11(4):3159. doi:10.2903/j.efsa.2013.3159.

  381. Watts P, Smith A, Hinchcliffe M. ChiSys as a chitosan-based delivery platform for nasal vaccination. In: das Neves J, Sarmento B, editors. Mucosal delivery of biopharmaceuticals: biology challenges and strategies. New York, NY: Springer; 2014. p. 499-516.

  382. Richardson C, Vedvick TS, Foubert TR, Tino WT, inventors; Ligocyte Pharmaceuticals, Inc, assignee. Norovirus vaccine formulations. United States patent 7955603 B2. 2011 Jun 7.

  383. Richardson C, Vedvick TS, Foubert TR, Tino WT, inventors; Takeda Vaccines, Inc, assignee. Norovirus vaccine formulations. United States patent 9272028 B2. 2016 Mar 1.

  384. Skwarczynski M. Inulin: a new adjuvant with unknown mode of action. EBioMedicine. 2017;15: 8-9.

  385. Hayashi M, Aoshi T, Haseda Y, Kobiyama K, Wijaya E, Nakatsu N, Igarashi Y, Standley DM, Yamada H, Honda-Okubo Y, Hara H, Saito T, Takai T, Coban C, Petrovsky N, Ishii KJ. Advax, a delta inulin microparticle, potentiates inbuilt adjuvant property of co-administered vaccines. EBioMedicine. 2017;15:127-36.

  386. Vasiliev YM. Chitosan-based vaccine adjuvants: incomplete characterization complicates preclinical and clinical evaluation. Expert Rev Vaccines. 2015;14(1):37-53.

  387. Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines. 2015;14(6):861-76.

  388. Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26(34):6811-7.

  389. Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine. 2016;11(3):269287.

  390. Ravindranathan S, Smith SG, Zaharoff DA. Effect of chitosan properties on immunoreactivity. Mar Drugs. 2016;14(5):91. doi:10.3390/md14050091.

  391. Freitas F, Roca C, Reis MA. Fungi as sources of polysaccharides for pharmaceutical and biomedical applications. In: Thakur VK, Thakur MK, editors. Handbook of polymers for pharmaceutical technologies, Vol 3: Biodegradable polymers. Salem, MA: Scrivener Publishing LLC; Hoboken, NJ: Wiley; 2015. p. 61-103.

  392. Barton C, Vigor K, Scoty R, Jones P, Lentfer H, Bax HJ, Josephs DH, Karagiannis SN, Spicer JF. Beta-glucan contamination of pharmaceutical products: how much should we accept? Cancer Immunol Immunother. 2016;65(11):1289-301.

CITADO POR
  1. Junter Guy-Alain, Lebrun Laurent, Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance, Journal of Pharmaceutical Analysis, 10, 4, 2020. Crossref

  2. Tischer Cesar A., Glucans, in Polysaccharides of Microbial Origin, 2021. Crossref

  3. Álvarez-Viñas Milena, Souto Sandra, Flórez-Fernández Noelia, Torres Maria Dolores, Bandín Isabel, Domínguez Herminia, Antiviral Activity of Carrageenans and Processing Implications, Marine Drugs, 19, 8, 2021. Crossref

  4. Basu Probal, Saha Nabanita, Saha Tomas, Saha Petr, Polymeric hydrogel based systems for vaccine delivery: A review, Polymer, 230, 2021. Crossref

  5. Tischer Cesar A., Glucans, in Polysaccharides of Microbial Origin, 2022. Crossref

  6. Yuan Lei, Zhong Zheng-Chang, Liu Yu, Quan Hong, Lu Ya-Zhou, Zhang Er-Hao, Cai Hao, Li Lian-Qiang, Lan Xiao-Zhong, Structures and immunomodulatory activity of one galactose- and arabinose-rich polysaccharide from Sambucus adnata, International Journal of Biological Macromolecules, 207, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain