Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v44.i1.60
pages 68-75

Binary Dynamic Observation in the Problem of Nonlinear Generating the Signal of Switching the Space Structure of Linear Devices of Recurrent Code Conversion

Anatoliy V. Ushakov
St. Petersburg State University of Information Technologies, Mechanics and Optics Russia
Elena S. Yaitskaya
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics

SINOPSIS

The proposition has been made of the binary recursive algorithmic environment that allows one to extend structurally the functionality of binary linear dynamical systems, which consists in switching the structure of their state space with nonlinearly generated signals. For technical realization of binary recursive algebraic environment the potential of binary dynamic observation is used to reduce essentially the number of topological problems.

REFERENCIAS

  1. Ushakov A.V., Yaitskaya E.S. , Noise-protected decoding of systematic code.

  2. Bochmann D., Posthoff C. , Binary dynamic systems.

  3. Baranov S.I. , Synthesis of microprogramming automatons.

  4. Gill A. , Linear sequential circuits. Analysis, synthesis, and applications.

  5. Peterson W., Weldon E. , Error-correcting codes.

  6. Ushakov A.V., Yaitskaya E.S. , Dynamical observation of nonlinear binary dynamical systems.