Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v51.i2.30
pages 22-29

On the Formalization of Dynamics in Information Processes on the Basis of Inhomogeneous One-Dimensional Diffusion Models

Evgeniy V. Ivokhin
Kiev National Taras Shevchenko University, Kiev
Larisa T. Adzhubey
Kiev National Taras Shevchenko University, Kiev
Elena V. Gavrylenko
National Technical University of Ukraine "Igor Sikorsky Kiev Polytechnic Institute", Kiev

SINOPSIS

The approach to constructing mathematical models of the dynamics of extending information processes to a certain target group of population is considered. The basis of formalization is the use of heterogeneous models of the process of diffusion (penetration) of information into networks. The dynamics of information flows based on models with inhomogeneities of various types is simulated and investigated. Examples of the use of this approach are given; the results of numerical experiments are analyzed. The comparative analysis with model data on the spread of advertising information allows one in a number of cases to assert the adequacy of the results and parameters obtained of real processes of changing the perception of information within specified groups of the population

REFERENCIAS

  1. Andreev Yu.N., Algebraic methods of state space in the theory of control of linear objects, Avtomatika i telemekhanika, 1977, No. 3, 5–50.

  2. Marchuk G.I., Mathematical models in immunology: computational methods and experiments [in Russian], 3rd edition, Nauka, Moscow, 1991.

  3. Arnold V.I., Analytics and forecasting: mathematical aspect, Scientific-and-technological information, Series 1, Issue 3, 2003, 1–10.

  4. Braichevsky S.M., Lande D.V., Modern information flows: actual problems, Scientific-and-technological information, 2005, Series 1, Issue 11, 21–33.

  5. Bellman R., Mathematical problems in biology [Russian translation], Mir, Moscow, 1966.

  6. Smith R., Modelling disease ecology with mathematics, American Institute of Mathematical Sciences, Ottawa, 2008, ISBN 1601330049 (ISBN13: 9781601330048).

  7. Ivokhin E.V., Naumenko Yu.A., On formalization of information dissemination processes based on hybrid diffusion models, Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal “Problemy upravleniya i informatiki”, 2018. No. 4, 51–58. DOI: 10.1615/jautomatinf scicn.v50.i7.70

  8. Ivokhin E.V., Naumenko Yu.O., About individual mathematical models of the process of advertising spread in society, Vestnik KNU im. Tarasa Shevchenko, Ser. FMN, 2017, No. 1, 55–58.

  9. Ivokhin E.V., Adzhubey L.T., Gavrilenko O.V., On some mathematical models of formalization of socio-information flows, Vestnik KNU im. Tarasa Shevchenko, Ser. FMN, 2017, No. 2, 70–73.

  10. Aramanovich I.G., Levin V.I., Equations of mathematical physics [in Russian], Nauka, Moscow, 1969.

  11. Budak B.M., Samarskiy A.A., Tikhonov A.N., Collection of problems in mathematical physics, GizTTL, Moscow, 1956.