Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v51.i2.10
pages 1-10

Optimization of Processes of Robust Control of Quadcopter for Monitoring of Sea Waters

Victor L. Timchenko
Admiral Makarov National University of Shipbuilding, Nikolaev
Denis O. Lebedev
Admiral Makarov National University of Shipbuilding, Nikolaev

SINOPSIS

The synthesis of robust-optimal control system for the multidimensional nonlinear model of a quadcopter, based on optimization of motion trajectories, is proposed. Taking into account incomplete a priori information about the external environment, a robust control loop is synthesized based on measuring the output coordinates of a physical quadcopter with the additional use of the signals, generated by an optimal (reference) control system of variable structure. The given results of simulation demonstrate minimal values of control errors and energy expenses.

REFERENCIAS

  1. Kuntsevich V.M., Synthesis of robust optimal adaptive control systems for nonstationary objects under bounded disturbances, Journal of Automation and Information Sciences, 2004, 36, No. 3, 14–24. DOI: 10.1615/JAutomatInfScien.v36.i3.20

  2. Horowitz I., Survey of quantitative feedback theory (QFT), International Journal of Robust and Non-Linear Control, 2001, 11, No. 10, 887–921. DOI: 10.1002/rnc.637

  3. Altug E., Ostrowski J.P., Taylor C.J., Control of a quadrotor helicopter using dual camera visual feedback, The International Journal of Robotics Research, 2005, 24, No. 5, 329–341. DOI: 10.1177/ 0278364905053804

  4. Pyrkin A.A., Maltseva T.A., Labadin D.V., Surov M.O., Bobtsov A.A., Synthesis of quadcopters control systems using a simplified mathematical model, Izvestiya VUZov, Priborostroyenie, 2013, 56, No. 4, 47–51.

  5. Leira P.S., Johansen Т.А , Fossen T.I., Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera, Proceeding of Aerospace Conf., 2015, 1–10. DOI: 10.1109/AERO.2015.7119238

  6. Larin V.B., Tunik A.A., Synthesis of the quad-rotor flight control system, Proceeding of IEEE 4th International Conference “Methods and Systems of Navigation and Motion Control”, Ukraine, Kiev, 2016, 12–17. DOI: 10.1109/MSNMC.2016.7783095

  7. Andreev M.A., Miller В., Miller B.M., Stepanyan K.V., Path planning for unmanned aerial vehicle under complicated conditions and hazards, International Journal of Computer and Systems Sciences, 2012, 51, No. 2, 328–338. DOI: 10.1134/S1064230712010030

  8. Timchenko V.I., Ukhin O.A., Lebedev D.O., Optimization of nonlinear systems of variable structure for control of marine moving vehicles, Ibid., 2017, 49, No. 7, 33–47. DOI: 10.1615/JAutomatInfScien. v49.i7.30

  9. Timchenko V.L., Lebedev D.O., Kuklina K.A., Timchenko I.V., “Actual Problems of Unmanned Aerial Vehicles Development”, K., 2017, 192–196. DOI: 10.1109/ APUAVD.2017.8308807

  10. Timchenko V.L., Lebedev D.O., Optimization of stabilization processes of quadcopter for maritime traffic’s monitoring, Electronics and Control Systems, K., 2017, 3, No. 53, 32–38. DOI: 10.18372/ 1990-5548.53.12140