Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 52, 2020 Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/J Automat Inf Scien.v39.i1.50
pages 48-55

Methodology of Accuracy Assessment of Classification of Objects on Space Images

Mikhail A. Popov
Research Center of Aerospace Research of the Earth of the Institute of Geological Sciences of National Academy of Sciences of Ukraine, Kiev, Ukraine

SINOPSIS

The main aspects of improving the methodology of accuracy assessment of information received from space images are considered. The accuracy assessment criteria of classification of objects on the space images are discussed. Two statistic models for determining an examination sample size — binomial and polynomial are described. The influence of identification degree of pixels and geometry of examination site on classification accuracy is quantitatively evaluated. The particularities of accuracy assessment for classification of hyperspectral images are considered.


Articles with similar content:

Spatial-Temporal Filtering in Precision Radio-Engineering Systems of Technical Diagnostics
Telecommunications and Radio Engineering, Vol.60, 2003, issue 7-9
A. F. Velichko, D. A. Velichko, Viktoriya M. Shokalo
APPROACHES TO AUTOMATIC DATA PROCESSING IN HYPERSPECTRAL REMOTE SENSING
Telecommunications and Radio Engineering, Vol.73, 2014, issue 13
Benoit Vozel, M. L. Uss, Kacem Chehdi, N. N. Ponomarenko, V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, S. S. Krivenko
USING FUZZY CLUSTERING IN STRUCTURAL METHODS OF IMAGE CLASSIFICATION
Telecommunications and Radio Engineering, Vol.79, 2020, issue 9
I. S. Tvoroshenko, N. V. Vlasenko, V. О. Gorokhovatskyi
Recognition Methods Based on Autoregression Model of Signals
Telecommunications and Radio Engineering, Vol.58, 2002, issue 3&4
V. M. Bezruk
Farmland State Estimation Based on Agrophytocenoses Classification and Remote Sensing Satellite Data
Journal of Automation and Information Sciences, Vol.48, 2016, issue 5
Yulia V. Prutsko , Lyudmila V. Podgorodetskaya , Oleg V. Semeniv