Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 52, 2020 Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v39.i6.20
pages 30-44

Method for Processing Fuzzy Expert Information in Prediction Problems. Part II

Nadezhda I. Nedashkovskaya
Institute of Applied Systems Analysis of National Technical University of Ukraine "Kiev Polytechnical Institute" of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Ukraine

SINOPSIS

We proposed technique of processing fuzzy expert information, which includes estimate of coordination of this information and determination of fuzzy weights of objects. Technique is based on interval approximation of fuzzy matrixes of expert estimates. We consider method for search of interval weights from coordinated and uncoordinated interval matrixes of paired comparisons, which in the general case is reduced to solving a problem of nonlinear programming and models weak (prevalence by elements) and strong (prevalence by rows) conservation of ranks.


Articles with similar content:

Method for Processing Fuzzy Expert Information in Prediction Problems.
Part I

Journal of Automation and Information Sciences, Vol.39, 2007, issue 4
Nadezhda I. Nedashkovskaya
A WEIGHT-BOUNDED IMPORTANCE SAMPLING METHOD FOR VARIANCE REDUCTION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Linjun Lu, Tenchao Yu, Jinglai Li
ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 2
Sankaran Mahadevan, Bin Liang
Coevolving Feedforward Neural Networks
Journal of Automation and Information Sciences, Vol.48, 2016, issue 9
Oleg G. Rudenko, Alexander A. Bezsonov
HESSIAN-BASED SAMPLING FOR HIGH-DIMENSIONAL MODEL REDUCTION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 2
Omar Ghattas, Peng Chen