Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimir: 2150-766X
ISSN En Línea: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.420
pages 384-396

FLAME SPREADING AND VIOLENT ENERGY RELEASE PROCESS OF ALUMINUM TUBING IN LIQUID AND GASEOUS OXYGEN ENVIRONMENTS

M. M. Mench
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A.
P. A. Houghton
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
J. G. Hansel
Air Products and Chemicals, Inc. Allentown, PA 18195-1501, USA

SINOPSIS

The intense reaction observed between aluminum and oxygen in a liquid oxygen (LOX) environment has been termed a violent energy release (VER) reaction, but the details of the combustion process are not fully understood. In this study, the promoted ignition, flame spreading, and combustion phenomena of aluminum 3003 alloy tubing filled with LOX, surrounded by a shell of gaseous oxygen (GOX), were observed. Parameters that were systematically varied include the tube- and shell-side GOX and LOX pressures, flow rates, oxygen purities, as well as igniter location, tube-side GOX quality, and sample thickness. An extremely high flame spreading rate, a high luminosity flame-zone, and a very rapid rate of heat release characterize the VER burning mode. The effect of tube- or shell-side impurity is to raise the threshold pressure for self-sustained combustion and VER transition. Decreased wall thickness tends to lower the threshold pressure for self-sustained combustion and transition to VER. It is believed that the VER flame-spreading mode is primarily a result of high convective mass flux of oxygen into the reaction zone due to oxygen phase transition; this process greatly enhances both the reaction rate and the molten material removal rate.


Articles with similar content:

COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada
COMBUSTION AND FLAME SPREADING OF ALUMINUM TUBING IN HIGH PRESSURE OXYGEN
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
J. P. Haas, M. M. Mench
MACH'S NUMBER IN A CONVERGENT-DIVERGENT PLASMA NOZZLE
Progress in Plasma Processing of Materials, 1999, Vol.1, 1999, issue
D. C. Schram, K.T.A.L. Burm, W. J. Goedheer, G. M. Janssen
EFFECTS OF NANO-METRIC ALUMINUM POWDER ON THE PROPERTIES OF COMPOSITE SOLID PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 4
Xu Huixiang, Li Yonghong, Luigi T. DeLuca, Liu Fangli, Weiqiang Pang, Zhao Fengqi, Fan Xuezhong, Xie Wuxi
EXAMINATION OF AP/KN COMPOSITE PROPELLANT THERMAL WAVE STRUCTURE UNDER STEADY-STATE BURNING
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 2
D. D. Blagojevic, Boris S. Jankovski, Marko V. Milos, Vladica S. Bozic