Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimir: 2150-766X
ISSN En Línea: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.840
pages 803-813

EXAMPLES OF UNSTEADY COMBUSTION IN NON-METALLIZED PROPELLANTS

Merrill W. Beckstead
Brigham Young University, Provo Utah USA
K. V. Meredith
Brigham Young University, Provo, Utah, USA
Fred S. Blomshield
Naval Air Warfare Center-Weapons Division, NAVAIR, China Lake, CA 93555

SINOPSIS

For over thirty years the T-Burner has been the de facto standard for determining the unstable response of solid propellants in the USA. This paper reviews some of the different approaches that have been used, and briefly summarizes advantages and disadvantages of the different techniques. Data from a variety of sources have been reviewed and are summarized showing the effect of various test conditions and propellant formulation variations. Most of the data are reported in fairly obscure references, either limited distribution company reports or JANNAF proceedings. Much of the data taken in the 60's and early 70's were with so-called research propellants, with relatively low solids loading and usually monomodal AP as the oxidizer. Later data were obtained with propellants containing solids loading more typical of practical propellants. Several distinct differences were observed in the data for the different types of propellants. Data varying AP particle size distributions indicate that either additional fine AP or finer AP usually increases the propellant response. A significant reduction in the response can be achieved by reducing the amount of fine AP, while holding burning rate constant either by adding a catalyst or by varying the overall AP size distribution. A significant amount of data has been obtained for reduced smoke propellants containing stability additives. The data indicate that the additives provide significant particle damping, and most often, also reduce the propellant response. Data from double base propellants indicate a much broader response over a wide frequency range. This implies that double base propellants should be more unstable in tangential modes than composite propellants. This trend seems to be consistent with observed motor data. Measuring the response of metallized propellants has been a challenge due to the large damping due to metal oxide particles in the gas. Data from metallized propellants are not presented here, but will be summarized in a future paper.


Articles with similar content:

HIGH BURNING RATE SOLID ROCKET PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
G. Doriath
BORON PROPELLANTS FOR DUCTED ROCKET APPLICATION
International Journal of Energetic Materials and Chemical Propulsion, Vol.2, 1993, issue 1-6
Christian Perut, B. Mahe
CHARACTERIZATION OF SOLID FUEL MASS-BURNING ENHANCEMENT UTILIZING AN X-RAY TRANSLUCENT HYBRID ROCKET MOTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 6
Eric Boyer, Brian Evans, Nicholas A. Favorito
BALLISTIC AND COMBUSTION PROPERTIES OF HIGH-PRESSURE EXPONENT HYDROCARBON-BASED FUEL-RICH PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Gideon J. van Zyl
BURN RATE STUDEES OF GAS GENERATOR PROPELLANTS CONTAINING AP/RDX
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
A. N. Nazare, Haridwar Singh, S. N. Asthana, P. G. Shrotri