Suscripción a Biblioteca: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publicado 6 números por año

ISSN Imprimir: 2150-766X

ISSN En Línea: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

COUPLING OF TRANSIENT THERMAL AND MECHANICAL STRESSES COMPUTATIONS IN GRAPHITE NOZZLE MATERIALS

Volumen 16, Edición 2, 2017, pp. 175-195
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2018024875
Get accessGet access

SINOPSIS

In this work, a numerical simulation of the structural response of the graphite nozzle materials to the flow during the ignition transient of a solid rocket motor is considered. The measured pressure–time trace within the combustion chamber was used as an input parameter in the graphite-nozzle erosion minimization (GNEM) code to calculate gas-phase pressure, temperature, velocity, etc. in the graphite nozzle. The calculated pressure and convective heat flux from GNEM were applied as loading conditions in an associated thermo-structural model to obtain response of graphite nozzle materials to the transient pressure and thermal loading. The combined aero–thermo–structural response of the graphite rocket nozzle showed that the thermal stresses were significantly higher than the mechanical stresses. The radial displacements of inner nozzle surface showed that the nozzle diameter increases in the beginning due to thermo-mechanical stresses. The axial displacements of several points on the inner nozzle surface showed that the surface tends to displace toward the entrance plane.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain