Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimir: 2150-766X
ISSN En Línea: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2015011501
pages 399-420

TOWARDS THE SIMPLIFIED COMPOSITE PROPELLANT BURNING RATE MODEL BASED ON DETAILED CHEMISTRY CALCULATIONS

Matthew L. Gross
Naval Air Warfare Center, Weapons Division, China Lake, California 9355-6100 USA
Trevor D. Hedman
Naval Air Warfare Center, Weapons Division, China Lake, California 9355-6100 USA

SINOPSIS

A simple burning rate model for ammonium perchlorate (AP) and hydroxyl-terminated-polybutadiene (HTPB) composite propellants has been developed based on detailed chemistry calculations. The detailed kinetics two-dimensional (DK2D) model, which includes detailed kinetics and species transport, was used to identify combustion trends in AP/HTPB propellants. These trends in the burning behavior of AP-based composite propellants have been verified by comparison with recently collected experimental data. A simple burning rate model has been developed based on the identified trends and calculated burning rates of the DK2D model. The methodology used to predict the burning rates with the simple model is presented. This simplified AP/HTPB burning rate model requires very minimal runtime and adequately predicts the burning rates based on AP particle size, formulation, and pressure. This model has been applied to 27 different AP/HTPB formations including mono-, bi-, and trimodal propellants, and 90% of the predictions have fallen within 20% of experimental data. The advantages and limitations of the approach are discussed.


Articles with similar content:

DEVELOPING REDUCED KINETICS USING CHEMICAL REACTOR NETWORKS AND SENSITIVITY ANALYSIS
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.6, 2018, issue
Francine Battaglia, Lu Chen
EXPERIMENTAL ANALYSIS METHOD OF THE TRANSIENT BURNING RATE OF SOLID PROPELLANT UNDER RAPID PRESSURE CHANGES
International Journal of Energetic Materials and Chemical Propulsion, Vol.13, 2014, issue 5
Boris S. Jankovski, Vladica Bozic
CHARACTERIZATION OF SOLID FUEL MASS-BURNING ENHANCEMENT UTILIZING AN X-RAY TRANSLUCENT HYBRID ROCKET MOTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 6
Eric Boyer, Brian Evans, Nicholas A. Favorito
A PREDICTIVE CORRESPONDING STATES MODEL FOR VISCOSITY OF NONPOLAR AND POLAR MIXTURES
International Heat Transfer Conference 11, Vol.19, 1998, issue
G. Scalabrin, G. Cristofoli, M. Grigiante
PRINCIPAL AND INDEPENDENT COMPONENT ANALYSIS OF HYBRID COMBUSTION FLAME
International Journal of Energetic Materials and Chemical Propulsion, Vol.18, 2019, issue 1
Mario Kobald, Helmut K. Ciezki, Anna Petrarolo, Stefan Schlechtriem