Suscripción a Biblioteca: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publicado 6 números por año

ISSN Imprimir: 2150-766X

ISSN En Línea: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

THERMAL DECOMPOSITION KINETICS OF RDX-BASED PROPELLANTS UNDER DIFFERENT PRESSURES

Volumen 19, Edición 4, 2020, pp. 329-340
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2020034319
Get accessGet access

SINOPSIS

The thermal decomposition of RDX-based propellants with different RDX contents (40, 30, and 10 wt%) was characterized by high-pressure differential scanning calorimetry at 0.1, 2.0, and 4.0 MPa. The thermal decomposition activation energy of RDX-based propellants with different solid contents and at different pressures was calculated using the Friedman-Reich-Levi, ASTM E698, and Flynn-Wall-Ozawa methods, and the kinetic parameters were calculated using isoconversional methods. The results showed that the differential scanning calorimetry curves of 40 and 30 wt% RDX propellants presented a double peak. The second decomposition peak was more obvious with an increase in RDX content. With an increase in the pressure, the peak temperature decreased and the decomposition heat increased.

REFERENCIAS
  1. Anniyappan, M., Sonawane, S.H., Pawar, S.J., and Sikder, A.K., (2015) Thermal Decomposition and Kinetics of 2,4-Dinitroimidazole: An Insensitive High Explosive, Thermochim. Acta, 614, pp. 93-99.

  2. Benhammada, A. and Trache, D., (2019) Thermal Decomposition of Energetic Materials Using TG-FTIR and TG-MS: A State-of-the-Art Review, Appl. Spectrosc. Rev, pp. 1-54. DOI: 10.1080/05704928.2019.1679825.

  3. Chelouche, S., Trache, D., Tarchoun, A.F., Abdelaziz, A., Khimeche, K., andMezroua, A., (2019) Organic Eutectic Mixture as Efficient Stabilizer for Nitrocellulose: Kinetic Modeling and Stability Assessment, Thermochim. Acta, 673, pp. 78-91.

  4. Damse, R.S., Omprakash, B., Tope, B.G., Chakraborthy, T.K., and Singh, A., (2009) Study ofN-n-Butyl-N-(2-Nitroxyethyl)Nitramine in RDX based Gun Propellant, J. Hazard. Mater, 167(1-3), pp. 1222-1225.

  5. Damse, R.S., Singh, A., and Singh, H., (2007) High Energy Propellants for Advanced Gun Ammunition based on RDX, GAP, and TAGN Compositions, Propel. Explos. Pyrotech, 32(1), pp. 52-60.

  6. Guo, M., Ma, Z., He, L., He, W., and Wang, Y., (2017) Effect of Varied Proportion of GAP-ETPE/NC as Binder on Thermal Decomposition Behaviors, Stability and Mechanical Properties of Nitramine Propellants, J. Therm. Anal. Calorim., 130(2), pp. 1-10.

  7. Hanafi, S., Trache, D., Abdous, S., Bensalem, Z., and Mezroua, A., (2019) 5-Nitro-1,2,4-Triazole-3-One: A Review of Recent Advances, Chin. J. Energetic Mater, 27(4), pp. 326-347.

  8. Kohga, M., Shigi, D., and Beppu, M., (2019) Detonation Properties of Ammonium Nitrate/Nitramine-Based Composite Propellants, J. Energetic Mater., 37(3), pp. 309-319.

  9. Lee, P.P. and Back, M.H., (1988) Kinetic Studies of the Thermal Decomposition of Nitroguanidine Using Accelerating Rate Calorimetry, Thermochim. Acta, 127, pp. 89-100.

  10. Liu, Z., Zhang, F., Du, P., and Xu, B., (2019) Effect of NQ Content on the Thermal Decomposition of Nitroguanidine Propellant Using Isoconversional Methods, J. Therm. Anal. Calorim., 137(2), pp. 473-480.

  11. Mezroua, A., Khimeche, K., Lefebvre, M.H., Benziane, M., and Trache, D., (2014) The Influence of Porosity of Ammonium Perchlorate (AP) on the Thermomechanical and Thermal Properties of the AP/Polyvinylchloride (PVC) Composite Propellants, J. Therm. Anal. Calorim, 116(1), pp. 279-286.

  12. Muravyev, N.V., Monogarov, K.A., Bragin, A.A., Fomenkov, I.V., and Pivkina, A.N., (2016) HP-DSC Study of Energetic Materials. Part I. Overview of Pressure Influence on Thermal Behavior, Thermochim. Acta, 631, pp. 1-7.

  13. Naya, T. and Kohga, M., (2014) Influences of Particle Size and Content of RDX on Burning Characteristics of RDX-Based Propellant, Aerospace Sci. Technol., 32(1), pp. 26-34.

  14. Sanghavi, R.R., Khire, V.H., Chakraborthy, T.K., and Singh, A., (2006) Studies on RDX Influence on Performance Increase of Triple Base Propellants, Propel. Explos. Pyrotech., 31(4), pp. 318-321.

  15. Tarchoun, A.F., Trache, D., Klapotke, T.M., Chelouche, S., Derradji, M., Bessa, W., and Mezroua, A., (2019) A Promising Energetic Polymer from Posidonia Oceanica Brown Algae: Synthesis, Characterization, and Kinetic Modeling, Macromol. Chem. Phys, 220(22), p.1900358.

  16. Trache, D., (2016) Comments on "Thermal Degradation Behavior of Hypochlorite-Oxidized Starch Nanocrystals under Different Oxidized Levels," Carbohydrate Polymers, 151, pp. 535-537.

  17. Trache, D., Khimeche, K., Mezroua, A., and Benziane, M., (2016) Physicochemical Properties of Micro-crystalline Nitrocellulose from Alfa Grass Fibres and Its Thermal Stability, J. Therm. Anal. Calorim., 124(3), pp. 1485-1496.

  18. Trache, D., Maggi, F., Palmucci, I., and DeLuca, L.T., (2018) Thermal Behavior and Decomposition Kinetics of Composite Solid Propellants in the Presence of Amide Burning Rate Suppressants, J. Therm. Anal. Calorim, 132(3), pp. 1601-1615.

  19. Trache, D. and Tarchoun, A.F., (2018) Stabilizers for Nitrate Ester-Based Energetic Materials and Their Mechanism of Action: A State-of-the-Art Review, J. Mater. Sci., 53(1), pp. 100-123.

  20. Trache, D. and Tarchoun, A.F., (2019) Analytical Methods for Stability Assessment of Nitrate Esters-Based Propellants, Crit. Rev. Anal. Chem, 49(5), pp. 415-438.

  21. Venkatesh, M., Ravi, P., and Tewari, S.P., (2013) Isoconversional Kinetic Analysis of Decomposition of Nitroimidazoles: Friedman Method vs. Flynn-Wall-Ozawa Method, J. Phys. Chem. A, 117(40), pp. 10162-10169.

  22. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perezmaqueda, L.A., Popescu, C., and Sbirrazzuoli, N., (2011) ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 520(1-2), pp. 1-19.

  23. Vyazovkin, S., Chrissafis, K., Lorenzo, M.L.D., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., and Sunol, J.J., (2014) ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations, Thermochim. Acta, 590, pp. 1-23.

  24. Wiegand, D.A., Nicolaides, S., and Pinto, J., (1990) Mechanical and Thermomechanical Properties of NC Base Propellants, J. Energetic Mater., 8(5), pp. 442-461.

  25. Wu, X., Rao, G., Chen, L., Chen, W., Wang, J., and Zhang, C., (2017) Analysis for Decomposition Characteristics and Piecewise Thermokinetics of Nitramine Modified Double-Base Propellant with High Solid Content, Propel. Explos. Pyrotech., 42(10), pp. 1149-1154.

  26. Zhang, F., Liu, Z., and Du, P., (2018) Thermal Decomposition Kinetics of Nitroguanidine Propellant under Different Pressures, Propel. Explos. Pyrotech., 43(4), pp. 390-397.

  27. Zhang, F., Zhu, D., Liu, Q., Liu, Z., and Du, P., (2017) Study on the Effect of RDX Content on the Properties of Nitramine Propellant, Defence Technol., 13(4), pp. 246-248.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain