Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimir: 2150-766X
ISSN En Línea: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2019027831
pages 1-8

HYPERGOLICITY AND IGNITION DELAY STUDY OF 2-AZIDOETHANOL AND HYDROGEN PEROXIDE

Stefanie Heimsch
Energetic Materials Research, Ludwig-Maximilian University Munich, Munich, 81377, Germany
Thomas M. Klapotke
Energetic Materials Research, Ludwig-Maximilian University Munich, Munich, 81377, Germany

SINOPSIS

The search for "greener and less toxic" alternatives to commonly used hydrazine and hydrazine derivative fuels is urgent due to their toxicity and complex handling. In this paper, the suitability of 2-azidoethanol as a possible replacement candidate for hypergolic bipropellants is reported. The compound shows good properties, such as easy synthesis, good sensitivity values, higher density, and lower toxicity. As an eco-friendly oxidizer, high test peroxide [(HTP), 98% content] is used. Rocketspecific calculations of 2-azidoethanol based on the GordonMcBride code predict a maximum specific impulse of 303 s in a HTP bipropellant system. Drop tests were performed to investigate different additives for hypergolicity and short ignition delay times. Also, the effect of the amount of additive was tested and evaluated.

REFERENCIAS

  1. Aston, J.G., Fink, H.L., Janz, G.J., and Russell, K.E., (1951) , The Heat Capacity, Heats of Fusion and Vaporization, Vapor Pressures, Entropy and Thermodynamic Functions of Methylhydrazine, J. Am. Chem. Soc., 73, pp. 1939–1943.

  2. Aston, J.G., Wood, J.L., and Zolki, T.P., (1953) , The Thermodynamic Properties and Configuration of Unsymmetrical Dimethylhydrazine, J. Am. Chem. Soc., 75, pp. 6202–6204.

  3. Biswas, M., Saha, A., Dule, M., and Mandal, T.K., (2014) , Polymer-Assisted Chain-Like Organization of CuNi Alloy Nanoparticles: Solvent-Adoptable Pseudohomogeneous Catalysts for Alkyne–Azide Click Reactions with Magnetic Recyclability, J. Phys. Chem., 118.

  4. Brase, S., Gil, C., Knepper, K., and Zimmermann, V., (2005) , Organic Azides: An Exploding Diversity of a Unique Class of Compounds, Angew. Chem. Int. Ed., 44, pp. 5188–5240.

  5. Bundesanstalt fur Materialforschung und Prufung (BAM), (2018), accessed March 03, 2018, from https://www.bam.de/Navigation/DE/Home/home.html.

  6. Cao, C.J., Johnson, M.S., Hurley, M.M., and Klapotke, T.M., (2012) , <i>In Vitro</i> Approach to Rapid Toxicity Assessment of Novel High-Nitrogen Energetics, JANNAF J. Propul. Energet., 5, pp. 41–51.

  7. Clark, J., (1972) , IGNITION! An Informal History of Liquid Propellants, New Bruswick, NJ: Rutgers University Press.

  8. Cole, L.G. and Gilbert, E.C., (1951) , The Heats of Combustion of Some Nitrogen Compounds and the Apparent Energy of the N–N Bond, J. Am. Chem. Soc., 73, pp. 5423–5427.

  9. Donovan, T.M., Shomate, C.H., and McBride, W.R., (1960) , The Heat of Combustion of Tetramethyltetrazene and 1,1-Dimethylhydrazine, J. Phys. Chem., 64, pp. 281–282.

  10. Environmental Protection Agency (EPA), (2002) , Health and Environmental Effects Profile for Hydrazine and Hydrazine Sulfate, Washington, DC, Rep. EPA/600/X-84/332.

  11. European Chemicals Agency (ECHA), (2011) , Inclusion of Substances of Very High Concern in the Candidate List, European Chemical Agency, Helsinki, Finland, Rep. ED/31/2011.

  12. Evonik, (2018) , Hydrogen Peroxide, accessed June 10, 2018, from http://www.activeoxygens. com/product/h2o2/en/products/hydrogen-peroxide/pages/default.aspx.

  13. Fagley, T.F., Klein, E., and Albrecht, J.F., (1953) , The Heats of Combustion of Diazoaminobenzene, Benzotriazole and 2-Triazoethanol, J. Am. Chem. Soc., 75, pp. 3104–3106.

  14. Grieß, P., (1864) , On a New Series of Bodies in which Nitrogen is Substituted for Hydrogen, Philos. Trans. R. Soc. London, 154, pp. 667–731.

  15. Jyoti, B.V.S., Naseem, M.S., and Baek, S.W., (2017) , Hypergolicity and Ignition Delay Study of Pure and Energized Ethanol Gel Fuel with Hydrogen Peroxide, Combust. Flame, 176, pp. 310–325.

  16. Klapotke, T.M., (2015) , Chemistry of High-Energy Materials, 3rd ed., Berlin: De Gruyter.

  17. McBride, B.J. and Gordon, S., (2017) , CEA NASA Computer Program, accessed March 15, 2017, from https://www.grc.nasa.gov/www/CEAWeb/.

  18. North Atlantic Treaty Organization (NATO), (1999) Explosives, Impact Sensitivity Tests, NATO Standardization Agreement 4489.

  19. North Atlantic Treaty Organization (NATO), (2002) Explosives, Friction Sensitivity Tests, NATO Standardization Agreement 4487.

  20. Rarata, G. and Florczuk, W., (2016) , Novel Liquid Compounds as Hypergolic Propellants with HTP, J. KONES, 23(1), pp. 271–278.

  21. Rusek, J.J., Anderson, N., and Lormans, B.M., (1999) , Non-Toxic Hypergolic Miscible Bipropellant, US Patent 5932837, filed December 22, 1997, and issued August 3, 1999.

  22. Scott, D.W., Oliver, G.D., Gross, M.E., Hubbard, W.N., and Hugh, M., (1949) , Hydrazine: Heat Capacity, Heats of Fusion and Vaporization, Vapor Pressure, Entropy and Thermodynamic Functions, J. Am. Chem. Soc., 71, pp. 2293–2297.

  23. UN Guidelines, Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 4th ed., New York, NY–Geneva, Switzerland: United Nations, 1999.

  24. Verevkin, S.P., Emel’yanenko, V.N., Algarra, M., L´opez-Romero, J.M., Aguiar, F., Rodriguez-Borges, J.E., and da Silva, J.C.E., (2011) , Vapor Pressures and Enthalpies of Vaporization of Azides, J. Chem. Thermodyn., 43, pp. 1652–1659.

  25. Wehrwissenschaftliches Institut fur Werk und Betriebsstoffe (WIWeB), (2002a) Ermittlung der Explosionsgefahrlichkeit, Reibeempfindlichkeit mit dem Reibeapparat, WIWeB Standardarbeitsanweisung 4- 5.1.03, Erding, Germany: WIWeB.

  26. Wehrwissenschaftliches Institut fur Werk und Betriebsstoffe (WIWeB), (2002b) Ermittlung der Explosionsgefahrlichkeit, Schlagempfindlichkeit mit dem Fallhammer, WIWeB Standardarbeitsanweisung 4- 5.1.02, Erding, Germany: WIWeB.


Articles with similar content:

ENVIRONMENT-FRIENDLY COMPOSITE PROPELLANTS BASED ON AMMONIUM DINITRAMIDE
International Journal of Energetic Materials and Chemical Propulsion, Vol.18, 2019, issue 1
Claudio Tagliabue, Volker Weiser, Volker Gettwert, Sven Hafner, Sebastian Fischer
INVESTIGATION OF SOLID OXIDIZER AND GASEOUS FUEL COMBUSTION PERFORMANCE USING AN ELEVATED PRESSURE COUNTERFLOW EXPERIMENT FOR REVERSE HYBRID ROCKET ENGINE
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 6
Grant A. Risha, Terrence L. Connell, Jr., Reed H. Johansson, Gregory Young, Richard A. Yetter
A STUDY OF HYBRID RAMJET PERFORMANCE
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 6
Ichiro Nakagawa
HIGH BURNING RATE SOLID ROCKET PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
G. Doriath
DETERMINATION OF SOLID PROPELLANT BURNING RATE SENSITIVITY TO THE INITIAL TEMPERATURE BY THE ULTRASONIC METHOD
International Journal of Energetic Materials and Chemical Propulsion, Vol.3, 1994, issue 1-6
J. CI. Demarais, Franck Cauty, Charles Erades