Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimir: 0040-2508
ISSN En Línea: 1943-6009

Volumes:
Volumen 79, 2020 Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i17.40
pages 1535-1554

SMART LOSSY COMPRESSION OF IMAGES BASED ON DISTORTION PREDICTION

S. S. Krivenko
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
O. Krylova
Kharkiv National Medical University, 4 Nauka Ave., Kharkiv, 61022, Ukraine
E. Bataeva
Kharkiv University of Humanities "People's Ukrainian Academy", 27 Lermontovskaya St., Kharkiv, 61024, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine

SINOPSIS

Images of different origin are used nowadays in numerous applications spreading the tendency of world digitalization. Despite increase of memory of computers and other electronic carriers of information, amount of memory needed for saving and managing digital data (images and video in the first order) increases faster making crucial the task of their efficient compression. Efficiency means not only appropriate compression ratio but also appropriate speed of compression and quality of compressed images. In this paper, we analyze how this can be reached for coders based on discrete cosine transform (DCT). The novelty of our approach consists in fast and simple analysis of DCT coefficient statistics in a limited number of 8×8 pixel blocks with further rather accurate prediction of mean square error (MSE) of introduced distortions for a given quantization step. Then, a proper quantization step can be set with ensuring the condition that MSE of introduced errors is not greater than a preset value to provide a desired quality. In this way, multiple compressions/decompressions are avoided and the desired quality is provided quickly and with appropriate accuracy. We present examples of applying the proposed approach.


Articles with similar content:

AN AUTOMATIC APPROACH TO LOSSY COMPRESSION OF AVIRIS HYPERSPECTRAL DATA
Telecommunications and Radio Engineering, Vol.69, 2010, issue 6
M. S. Zriakhov, N. N. Ponomarenko, A. Kaarna
REGULARIZATION OF THE LATTICE TIME FUNCTION OF THE SIGNAL IN THE COMMUNICATION CHANNEL
Telecommunications and Radio Engineering, Vol.72, 2013, issue 2
A. P. Loktionov
Robust Self-synchronised Digital Speech Watermarking System
Journal of Automation and Information Sciences, Vol.44, 2012, issue 3
Natalya V. Koshkina
DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
Synthesis of Adaptive Noise Compensation System with Parallel-Serial Input Signal Processing
Journal of Automation and Information Sciences, Vol.32, 2000, issue 3
Vadim P. Prokofyev, Yuriy P. Chinayev, Alexander I. Nevolko