Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimir: 0040-2508
ISSN En Línea: 1943-6009

Volumes:
Volumen 79, 2020 Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i9.30
pages 769-786

DENOISING OF MULTICHANNEL IMAGES WITH NONLINEAR TRANSFORMATION OF REFERENCE IMAGE

S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
Karen O. Egiazarian
Tampere University, Department of Signal Processing, P. O. Box 553, FIN-33101, Tampere, Finland

SINOPSIS

It has been demonstrated recently that efficiency of filtering a noisy component image of a multichannel image can be sufficiently improved under condition that the multichannel image has almost noise-free component image(s) that possess high correlated with the noisy component image used as reference. High correlation and practical absence of the noise are only pre-requisites for efficient filtering of the noisy image using reference. Other criteria of similarity than cross-correlation factor are important. In this paper we show how it is possible to make the reference image very "close" to the noisy one by exploiting nonlinear transformation. Moreover, it is demonstrated that the proposed approach can be useful for denoising images corrupted by signal-dependent noise which is often the case for multichannel remote sensing data.


Articles with similar content:

Image Filtering Based on Discrete Cosine Transform
Telecommunications and Radio Engineering, Vol.66, 2007, issue 18
N. N. Ponomarenko, R. Oktem
DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
3D DCT Based Filtering of Color and Multichannel Images
Telecommunications and Radio Engineering, Vol.67, 2008, issue 15
P. T. Koivisto, N. N. Ponomarenko, A. A. Zelensky
Automatic Vulnerability Detection Algorithm for the SQL-Injection
Journal of Automation and Information Sciences, Vol.51, 2019, issue 7
Shukhrat K. Kamalov , Askar T. Rakhmanov , Rustam Kh. Khamdamov , Komil F. Kerimov
DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES
Telecommunications and Radio Engineering, Vol.76, 2017, issue 19
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova