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This work investigates the problem of parameter estimation within the frameworks of deterministic and stochastic pa-
rameter estimation methods. For the deterministic methods, we look at constrained and unconstrained optimization
approaches. For the constrained optimization approaches we study three different formulations: L?, error in constitu-
tive equation method (ECE), and the modified error in constitutive equation (MECE) method. We investigate these
formulations in the context of both Tikhonov and total variation (TV) regularization. The constrained optimization
approaches are compared with an unconstrained nonlinear least-squares (NLLS) approach. In the least-squares frame-
work we investigate three different formulations: standard, MECE, and ECE. With the stochastic methods, we first
investigate Bayesian calibration, where we use Monte Carlo Markov chain (MCMC) methods to calculate the posterior
parameter estimates. For the Bayesian methods, we investigate the use of a standard likelihood function, a likelihood
function that incorporates MECE, and a likelihood function that incorporates ECE. Furthermore, we investigate the
maximum a posteriori (MAP) approach. In the MAP approach, parameters’ full posterior distribution are not generated
via sampling; however, parameter point estimates are computed by searching for the values that maximize the param-
eters’ posterior distribution. Finally, to achieve dimension reduction in both the MCMC and NLLS approaches, we
approximate the parameter field with radial basis functions (RBF). This transforms the parameter estimation problem
into one of determining the governing parameters for the RBF.

KEY WORDS: inverse problems, Bayesian calibration, maximum a posteriori estimate, error in constitu-
tive equation, nonlinear least squares, reqularization

1. INTRODUCTION

This paper investigates the problem of parameter estimation (also referred to as calibration or parameter identification)
in the context of a particular problem: given observed displacement field(s) on a beam, determine the elastic modu-
lus of a beam material. The approaches fall in two main classes: deterministic parameter estimation methods, which
yield single-value point estimates of the parameters, and stochastic parameter estimation methods, which give some
type of uncertainty about an optimal parameter value. For the deterministic methods, we investigate constrained and
unconstrained optimization approaches. In the context of constrained optimization of a cost functional, we investigate
three different first-order reduced-space formulations. Specifically, we look d&ftf@rmulation [1, 2], the error in
constitutive equation formulation [3-12], and the modified error in constitutive equation formulation [13-15]. Fur-
thermore, these formulations are investigated in the context of both Tikhonov and total variation (TV) regularization.
We compare the constrained optimization approaches, which minimize a specific cost functional plus a regularization
operator, with a general unconstrained nonlinear least-squares approach (NLLS) [16]. The formulations considered
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for the solution of the unconstrained NLLS problem are the standard, modified error in constitutive equation (MECE),
and error in constitutive equation (ECE) formulations. Radial basis functions are used to represent the elastic modulus
field, transforming the parameter estimation problem into one of determining the governing parameters for the radial
basis functions (RBF).

Reduced-space methods [17-19] have the advantage that only two linearized forward problems, state and adjoint
problems, are solved at each optimization iteration. For a moderate number of parameters, the solution of the for-
ward problems dominates the computational cost of an optimization iteration. Thus, when robust parallel solvers are
available, this approach inherits the parallel efficiency and scalability of the partial differential equation (PDE) solver
[20]. Moreover, if a first-order formulation is used, there is no need to derive second derivatives of the cost func-
tional, at the expense of a superlinear rate of convergence [21]. However, the convergence of first-order reduced-space
formulations often deteriorates as the number of parameters increases. As a result, such an approach often exhibits
poor algorithmic scalability with respect to the number of parameters [22]. On the contrary, full-space methods [23,
24] are quadratically convergent close to the local solution and can be made to exploit the structure of the resulting
Karush-Kuhn-Tucker (KKT) system in order to take advantage of existing parallel solvers. Furthermore, full-space
methods are independent of the number of parameters. However, these methods require the calculation of the second
derivatives of the cost functional. Moreover, the resulting KKT system can be ill-conditioned; thus, preconditioners
are needed to improve the effectiveness of full-space methods. The question of how to precondition the KKT system
is an important challenge and remains an active area of research.

In the context of Bayesian calibration, which requires a prior distribution on the parameters and uses the exper-
imental observations to update the prior and obtain “data-informed” posterior parameter distribution, Markov chain
Monte Carlo (MCMC) methods [25, 26] were used to calculate the posterior parameter estimates. MCMC methods
are widely used Bayesian methods due to their simplicity of coding and global convergence capability. However,
MCMC methods tend to suffer from the curse of dimensionality. In this study, we investigate three different likeli-
hood functions. Specifically, we look at the standard likelihood function, a likelihood function that incorporates ECE,
and a likelihood function that incorporates MECE. The other stochastic method investigated was the magiosdm
teriori (MAP) estimate [27-29]. In the MAP approach, we do not generate a full posterior distribution via sampling,
but we determine the mode of the parameters’ posterior distributions using the constrained deterministic optimization
approaches study herein. These mode estimates can be computed by searching for the parameters that maximize the
probability of the posterior distribution.

Overall, the set of methods described above allowed us to perform a comprehensive study and comparison of the
different parameter estimation approaches. In addition to the analysis of the different methods, our studies represent
specific contributions to the field of parameter estimation:

1. The MECE equations are derived for the elastostatic boundary value problem.
2. An iterative two-step approach for solving the ECE problem is presented (the alternating directions approach).

3. The ECE and MECE are incorporated directly into the Bayesian likelihood formulation. Our study shows that
the ECE likelihood formulation provides a regularization behavior and improves the convergence of the Markov
chain posterior.

4. The ECE and MECE are also incorporated into the MAP, where the ECE formulation provides improvements
in the determination of the uncertainty in the parameter values.

This paper is organized as follows: Section 1 provides some background on the beam displacement problem and
the problem formulation we are using. Section 2 presents the deterministic calibration approaches being used in this
paper. The first three methods presented in Section 2 refer to approaches for constrained optimization problems, while
the last method refers to an approach for unconstrained optimization problems. Section 3 presents the stochastic
calibration approaches being used in this paper. Section 4 presents the results with discussion, and Section 5 provides
conclusions.
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1.1 Problem Overview

A prototypical inverse problem in linear elastostatics consists of predicting the elastic modulus fiiefd measure-
mentsu™ related to the solution of the following boundary value problem:

V.-o=f in D,
u=0 on D,, Q)
o-n=T1 on D

where the stress tensoris given byc = EVu. In Eq. (1),D C R¢ is the computational domain with boundary
0D. The regions where displacements and surface tractions are applied are dendtgdbyD and D, C 90D,
respectively. Finallyy denotes displacemernts the volume forcer is the surface tractiom, is the outward-pointing
unit normal toD.;, and superscripf denotes spatial dimension.

1.2 Material Representation

The physical characteristics of a material will determine how its properties are represented in the context of a param-
eter estimation problem. For instance, in homogeneous materials the elastic modulus is assumed constant. However,
this assumption is not valid for heterogeneous materials. In this work, two distinct material representations were con-
sidered to characterize the elastic modulus field. First, the elastic modulus was assumed to vary pointwise (i.e., the
elastic modulus was estimated at each point in space). Second, the elastic modulus was represented as an expansion
of N, radially symmetric Gaussian radial basis functions as follows:

N
E=E.+Y» Eo(|lz—l),

i=1

whereE € RN are real-valued coefficients,. € R is the matrix elastic modulus, antde RY~*? gre the coordi-
nates of the Gaussian basis functions.
The Gaussian basis function is defined as

=~ 112
—~ Tr — X;
o(lz—3) = exp (—””) 7

G
wherec € RV are locality parameters that control the radius of influence of the Gaussian basis function. For normal-
ization purpose, the locality parameters were represented-asi0%, where eachy; € RV~ was estimated through
the optimization scheme.
Given the elastic modulus at the center of the RBF, the coefficiéntgere computed using the following inter-
polation scheme:

T lo=E,
where
N, N,
T=>> oz -z,
i=1 j=1
R
©=> E() - E..

j=1

The reader is referred to [30, 31] for more details on the interpolation scheme implemented herein.
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2. DETERMINISTIC PARAMETER ESTIMATION METHODS

For the constrained optimization problem, a first-order reduced-space approach was used. The advantage of this ap-
proach is that only first derivatives of the cost functional and constraints are required. Furthermore, regardless of
the number of unknown parameters, only two linearized forward problems are solved at each optimization iteration
to compute the gradient of the cost functional. The main disadvantage of deterministic optimization methods is that
these methods ensure just local extrema.

The discretization necessary for the solution of the constrained optimization problem can occur in two different
manners. In the first, called “optimize-then-discretize,” one can show that if the states and controls are a local solution
to the nonlinear programming problem, then there exist Lagrange multipliers such that the KKT or first-order nec-
essary optimality conditions are satisfied at the local solution [16]. Thus, under sufficient smoothness assumptions,
one obtains a KKT or optimality system. Finally, one generates a mesh on the computational domain and proceeds to
discretize the KKT system.

In the second approach, called “discretize-then-optimize,” one generates a mesh on the computational domain and
proceeds to discretize the nonlinear programming problem. If the states and controls are a local solution to the discrete
nonlinear programming problem, there exist Lagrange multipliers such that the discrete KKT conditions are satisfied
at the local solution, provided that some regularity conditions are met. Note that the discrete KKT systems obtained
with both approaches are not necessarily the same [24, 32].

In this work we use an optimize-then-discretize approach. One has to be careful when such approach is used
because the resulting optimality system can be nonsymmetric. This can lead to inexact gradients, which affects the
convergence rate of gradient-based optimization algorithms. There is no general consensus on which approach should
be preferred: it depends on the application and computational resources available to tackle the nonlinear programming
problem [33, 34].

2.1 L? Formulation

We consider the nonlinear programming problem
N )
minimize —(u—u",u—u™)+ R(FE
arg Minimize, (u—u™u—u")+ R(E)
subject to )
V- (EVu)=f in D,
(EVu)-n=1 on D,

whereld = {u: u € HY(D), u=00nD,},& ={E: E € L?*(D), E > 0}, R(-) is the regularization operator, and
p > 0is a given parameter. For simplicity of implementation, we restrict the search space of the elastic modulus to

HY(D).
The Lagrangian functional associated with the minimization problem defined in Eq. (2) is given by
L(u, E,\) = §<u —u™u—u")+ R(E)+ (N V- (EVu) — )+ {II(N), Tt — (EVu) - n), (3)

wherell(A): HY(D) — L?(D.). If {u*, E*} is a local solution of Eq. (2), there exists a Lagrange multiplier ¢/
such that the KKT conditions hold at the stationary pdimt, E*, A}, i.e.,

DL(u, E,\)(5u, 8E,8\) = DyL - Su+ DL - 8E + DAL - 5A = 0,

where
D, L -du = pB{u—u™,duy+ (V- (EVA),du) =0, (4)
Dyl -8E = (VR(E),5E) — (VA - Vu,8E) = 0, )
DAL -6A=(V - (EVu) — f,0A) + (II(6A) , T — (EVu) -n)p, = 0. (6)
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This allows us to reformulate the nonlinear programming problem in Eqg. (2) into

arg migig]gize g<u(E) —u™ u(E) —u™) + R(E),

where the gradient operator is given by
DpL = VR(E) — VA(E) - Vu(E).
Here,u(E) is the solution to the boundary value problem
V- (EVu)=f in D,
(EVu)-n=1 on D,
andA(E) is the solution to the adjoint problem

V- (EVA)=—-B(u—-u") in D.

2.1.1 Discretization

We define finite-dimensional subspaéés € U andé&;, € € with basis{¢i,...,¢p} and{P1,..., g}, respec-
tively. This leads to the Galerkin approximation of the optimality system: Find Er, An} € Uy, x &, X Uy, such
that F(up, Ep, Ap,w) = 0¥ w € Up. Hereu, = S0 uidi, By = Y%, Eab;, andA, = Y27 A;d;. Since
w = Zf; w; ¢, forw; € R, the Galerkin approximation of the optimality system is equivalent to

{ (w, Blun —u™)) — (Vw, B, V) }
F(uh, E;L, 7\h, ’LU) = <w, VR(Eh)> - (w, V)\h . V’U,h> =0 (7)
<w7T>DT - <w7 f> - <vw7 Ehvuh>
Thus, the discrete optimality system of Eq. (7) is given by
(K] {u} = {f}, 8)

where

Ne P P
K=A (/D S v, E;quaz-dD) , ©)

i=1 j=1

K P P
f=A (/DeZq)deDT/De;q)jde) . (10)

T j:l

The discrete system of equations in Eq. (8) is used to solve the adjoint problem. However, the discrete force vector is

given by
Ne P
f—eAl(B/DEjZId)j(uh—um)dD). (11)

Finally, the discrete gradient is given by

Dl =A (/
e=1 De <

P
Jj=

[b; VR(ER) — ¢ (VAL - Vuh)]) ; (12)

1

Ne
WhereA1 is an assemble operator andis the total number of elements.
e=
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2.1.2 Identification Procedure

The following algorithm is used to compute a new estimate for the elastic modulus atigheitgration of the
minimization process:

Repeat until convergence:

Given an estimate for the elastic moduli$
1. Solve Eq. (8) withf given by Eq. (10) to compute(E*) = uy,.
2. Solve Eq. (8) withf given by Eq. (11) to comput®( E*) = A.
3. Use Eq. (12) to compute the discrete gradiPptL.
4. Compute a new estimate for the elastic modulifs!.

2.2 MECE Formulation

Mathematically, we can describe the MECE functional as the sum of two errors: the error in the constitutive equation
and the error in the unreliable experimental information (e.g., observed measurements, boundary conditions, etc.).
The main idea of the MECE formulation is to use as reference the reliable experimental information (e.g., location of
sensors, location of the source, etc.) at hand as well as the reliable equations of the model (e.g., equilibrium equations).
The reliable information is verified exactly, while the constitutive equation and the unreliable information are verified
in an average sense.

Define the following error functional:

T (0,u, E) :%<(G—EVu),E_1(U—EVu)>, (13)

which denotes the error in the constitutive egaution. Hgre; 0 andJ = 0 <= o = E'Vu. Now, we consider the
nonlinear programming problem

arg  minimize

{u,0,E}€ UXSXE (o-n—1"0-n—1"p +{u—u" u—u")

T

+ =
N |

| R

{(c — EVu), E"* (0 — EVu)) + R(E) (14)
subject to
V.-o=f in D,

whered = {u:u € HY(D), u = 0onD,},S = {0: 0 € L?*(D), V-0 = finD, 0-n = TonD.},
and€ = {E: F € L*(D), E > 0}. Here,a > 0, p > 0 andy > 0 are given parameters, art(-) denotes a
regularization operator.

The Lagrangian functional associated with the minimization problem defined in Eq. (14) is given by

L(u,0,EN) = X(G-n—’rm,c-n—’rm>DT + E(u—u’",u—u"‘)
gc 2 (15)
+ 5<(cr— EVu),E~' (6 — EVu) + R(E) + (\,V -0 — f).

If {u*,o*, E*} is a local solution of Eq. (14), there exist Lagrange multipliers ¢/ such that the KKT conditions
hold at the stationary poidt.*, o*, E*, A}, i.e.,

DL(u, 0, E,\)(5u,50,8E,8A) = Dy L - 5u+ DoL -850 + DL - 8E + DAL - 5A = 0,

where
DL bu= (V- (0c— EVu),du) + B{u—u™,du) =0, (16)
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Dol -850 = (0 — EVu)E™',60) +v((c-n—1™)-n,50)p,. — (VA,80) + (A-n,80)p. =0, a7
DgL-8F = (VR(E),8E) — o{(0c — EVu) - (E7'Vu),sE)
o (18)

— 5<[(cr — EVu)E Y- [E7' (0 — EVu)],8E) =0,

DAL -5\ = (V-0 — f,6\) = 0. (19)

From Eqg. (17) we get
G:E<Vu+ ?) in D,

T=0-n=1"—

This allows us to reformulate the nonlinear programming problem in Eqg. (14) into

arg migiengize g@(E) —u™ u(E) —u™) + R(E)

+5a EVAE), B EVNE)) + 5 (\E)ME) b,

where the gradient operator is given by
1
DpL =VR(E) — (VAE),Vu(E)) — ﬁNME)’ VA(E)).

Here,u(E) andA(FE) are solutions to the boundary value problem

V- [E(Vu—i—?)] =f in D,

V. (EVA) = —B(u—u™) in D, (20)

2.2.1 Discretization

We define finite-dimensional subspaéés € U/ and&;, € £ with basis{¢$1,...,dp} and{P1,...,Pg}, respec-
tively. This leads to the Galerkin approximation of the optimality system: Find Ey, An} € U, xE, x Uy, such

that F(up,, Ep, Ap,w) = 0¥ w € Up. Hereu, = S0 uidi, By = Y%, Eab;, andA, = Y27 Ad;. Since
w = Zil w; d; for w; € R, the Galerkin approximation of the optimality system is equivalent to

<’LU, B(uh - Um)> - <V'LU, EVAh>

x
F(uh/7Elz,)\h7w) — <w7 VR(EIL)> - <UJ, E(v)\h . v7\h)> - a(w, v)\h . vuh> =0. (21)

<w7Tm—7\h> —<w7f>—<Vw,E(Vuh+V)\h)>
Y /b, x

Thus, the discrete optimality system of Eq. (21) is given by
K K ul| [ f
IR Rt @)
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where

Ne P P
K:é /CZZVd)thVdDidD ,

i=1 j=1

.. e p P PP
K:e'gl ./ezzvd)thv‘bidDJr/DeZZ;%CPMDT )

i=1 j=1 %=1 j=1

Ne P P
M=A [ 3 e 0.

i=1 j=1
Ne P ) P
f:eél /D qumczDT—/eZqﬂde ,
T j=1 j=1
_ Ne P .
f=A —f)/eZchumdD
j=1
Finally, the discrete gradient is given by
Ne . P 1
Dt = A [ X (4 TRE) - 6 (T Vun) — 55 (VWM ) a0 | (23)
e=1 De = 20

2.2.2 ldentification Procedure

The following algorithm is used to compute a new estimate for the elastic modulus at/gheitgration of the
minimization process:

Repeat until convergence:

Given an estimate for the elastic modulEi§
1. Solve Eq. (22) to compute(E*) = u;, andA(E*) = A,,.
2. Use Eq. (23) to compute the discrete gradiPritL.
3. Compute a new estimate for the elastic moduiig .

2.3 ECE Formulation

In the ECE approach we define a cost functional based on the error in the constitutive equations that connect a set of
kinematically admissible displacements and a set of statically admissible stresses. The parameter estimation problem
is solved by finding material properties, along with admissible displacement and stress fields, such that the ECE
functional is minimized.

The ECE functional can be defined as

j(uD, onN, E) = %<O‘N — EVUD, ON — EVUD>,
wheref > 0 is a given parameter,p is a kinematically admissible displacement fiedd; is a statically admissible

stress field, and’ is the elastic modulus. A displacement field is said to be kinematically admissible if it satisfies
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the measured displacement fieftt and satisfies Dirichlet boundary conditions. A stress fieldis said to be stati-
cally admissible if it satisfies the equilibrium equations and Neumann boundary conditions. Mathematically, we can
describe the collection of these quantities as follows:

U={up: up € H'(D),V - (EVup) = fin D,up =00nD,, up = u™in D™},

S={oy:ony €L*(D),V-oy=finD, u=00nD,, on-n=10nD},

whereD™ is the domain where the measurements are tdkes the space of kinematically admissible field, and
S is the space of statically admissible fietd;.

2.3.1 Alternating Directions Approach for ECE

We consider the problem

arg migingize S(UN — EVup,on — EVup) + R(E), (24)
[S
where the gradient operator is given by
DpJ = g (oy — EVup)-Vup + VR(E). (25)

An alternating directions approach was employed to solve the parameter estimation problem. The approach consists of
breaking the optimization process into two steps. First, given a current best guess for the material properties, we find
a statically admissible stress field and a kinematically admissible displacement field. Second, we use these admissible
fields to compute the gradient and proceed to update the material properties.

The alternating direction approach can be described as follows:

Repeat until convergence:

1. Find a statically admissible stress fietg: such that:
V-ony = f in D
u=0 on D, (26)

on-n=1T on D
2. Find a kinematically admissible displacement fielg such that:

V- (EVup)=f in D
up=0 on D,
up =u" in D™

(EVup)-n=1 on Dq

(27)

3. Use Eq. (25) to compute the gradient operdigs7 .
4. Compute a new estimate for the elastic moduius

2.3.2 Discretization

We define finite-dimensional subspaéése U, &, € €, andif, € U with basis{¢1,...,dp}, {¥1,...,Pg}, and
{X1,---,Xr} respectively. Herd{ = {u: w € H*(D), u=00nD,},U = {u: u € H(D), u =00nD,,, u =
u™in D™}, and€ = {E: E € L*(D), E > 0}. This leads to the following Galerkin approximation of the
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statically admissible problem: Findy, € Uy, | (Vw, EVuy) = (w,T)p, —(w, f) YV w € Uy,. Likewise, the Galerkin
approximation of the kinematically admissible problem is given by: Rifidec U, | (VWw, EVup) = (w,T)p, —

(w, f) V€ Uy. Hereuly =S5 wivdi, B" = 9 Eab;, andul, = 3% ui ;. Finally, the discrete system

of equations for the kinematically and statically admissible problems is given by Eq. (8) and the discrete gradient is
given by

Ne Q
DpJ = 6'51 /D Z [b; VR(ER) — B ((on — EpVup) - Vup)ldD | . (28)
e i

2.4 Nonlinear Least-Squares

The nonlinear least-squares (NLLS) method finds a set of unknown pararBetei®™ that best fit the set of ob-
servationsu € R™ with a deterministic modely = f(x,0), x € D, that is nonlinear with the set of unknown
parameter®. Assume we have additive Gaussian naise R+, which is mutually independent of the unknown
paramete® and identically distributed, allowing us to define the parameter-to-observable mag §$x, 0) + e.
Finally, the optimal values o are obtained by minimizing the sum of squared errors (SSE) of a given cost func-
tion.

A typical formulation for an unconstrained NLLS problem is to find the optimal value3 tof minimize the
following SSE cost function:

u 5 Ny 9
T©)=) [f(x:,0) —uil* =Y [ri (8)]".

i=1 i=1

The unconstrained NLLS approach requires an optimization algorithm to find the least-squares appro@infation
a minimum@*. Specialized optimization algorithms have been designed to exploit the structure of the SSE cost func-
tion. If 7(8) is twice differentiable, terms of residual(6), r; (8), and[r(8)]? result. By assuming that the residuals
r;(0) are close to zero near the solution, the Hessian matrix of second derivati¥é8)afan be approximated using
only first derivatives of-;(68). An algorithm that is particularly well-suited to the small-residual case and the above
formulation is the Gauss-Newton algorithm. This formulation and algorithm combination typically requires the user
to explicitly formulate each term in the least-squares (e.gterms forn, data points) along with the gradients for
each term.

The computational expense of the NLLS method implemented in this work increases as the number of parameters
ng increases due to the forward difference approximation of the gradient(¥:g ). For this reason, a finite repre-
sentation was used to approximate the spatially varying parameter of interest. The quality of a basis for the problem
at hand can be judged based on the dimensionality of the subspace needed to approximate the desired parameter. The
basis should capture the nature of the possible solution. In this work we use Gaussian RBF to approximate the elastic
modulus in the region of interest since it can represent gradual or sharp changes of the material properties in localized
regions (see Section 1.2).

2.4.1 Standard Formulation

For this case, the deterministic model is given by Eq. (1) and the SSE is defined as

70) =S [ — u (@),

=1

whereu™ denotes the measured data aré) is the finite element solution to Eq. (8).
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2.4.2 MECE Formulation

For this case, the deterministic model is given by Eq. (20) and the SSE is defined as

n u

JO) = [u" —u;(0)] + Y (),
j=1

i=1

whereu™ denotes the measured data anddenotes the number of Lagrange multipliersd) is the finite element
solution, and\(0) is the Lagrange multiplier. These quantities are computed by solving Eq. (22). Finally, notice that
A(8) — 0 as optimality is reached.

2.4.3 ECE Formulation

The alternating directions approach described in Section 2.3.1 was employed to solve the NLLS problem. Therefore,
at each iteration of the NLLS problem we find a statically admissible stress field and a kinematically admissible
displacement field by solving Eqg. (26) and Eq. (27), respectively. The SSE for this problem is given by

Neg

i=1

wheren, denotes the number of stress componemts,s the statically admissible stress field, ang is the kine-
matically admmissible displacement field. Finally, notice ti§6) = 0 <= on(0) = E(8)Vup.

3. STOCHASTIC PARAMETER ESTIMATION METHODS
3.1 Bayesian Calibration

Nonuniqueness is a central feature of ill-posed inverse problems; hence, multiple solutions of the unknown may be
consistent with the observations. Statistical inverse problems attempt to remove the ill-posedness by restating the
inverse problem as a well-posed extension in a larger space of probability distributions [35]. Furthermore, statistical
methods allow us to exploit prior information that is hidden in the regularization schemes often used in deterministic
inverse problems.

Assume we measure a quantitye R™v in order to get information about parametee R"-. These quantities
are related through a model which may be inaccurate and can contain parameters that are unknown. Moreover, the
measured quantity is usually poorly known and contains exragsR™. In a Bayesian framework, quantitigsx,
ande are viewed as random variables and the parameter-to-observablg:mik&p — R™v is defined as

whereX (w): 2 — R™ andY (w): Q@ — R™ are random variables and the sample sgaéethe set of all possible
outcomesw. In this work we denote random variables with uppercase letters and their realization with lowercase
letters. Furthermore, for ease of presentation we will omit the explicit dependency of the random variabieste
subsequent derivations.

Assume now thatX has a known prior probability density,,(z): R™ — R and the known data consist
of the observed quantity” such that the marginal probability(y): R™ — R. Then, the posterior probability
Tpost(2) : R™ — R is given by

Wprior(x) ﬂ-(y ‘ l‘)
(y

Tpost() == m(x | y) = X Tprior (2) T(y | ).

In the subsequent Bayesian formulation we use a scaled identity as the covariance matrix for both the prior and
likelihood pdf's.
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3.1.1 Standard Likelihood

Assume we have a noisy measuremerg R+ and a deterministic model of the fora(z)u = f, as defined in
Eq. (8), wherer € R"= is an unknown parameter. Furthermore, consider that the actual measurement is corrupted by
additive noisee, which is mutually independent with measuremerand unknown parameter. Then, if we have a
solution operator

G(z) =A@ ' fla(z): R — R™, (29)

the standard stochastic model is defined as R
U=U(X)+X. (30)

Here,U: Q — R™, X: Q — R, U: Q — R™ — R", andX: Q — R" reflects both the modeling and
observation errors.

If we denotere,or [u — U(x)] : R™ — R andm,,or (x) : R™ — R as the probability density function (pdf) of
Y and.X, respectively. The posterior pdf is given by

Tpost (LL’) X Terror [u - ﬁ(x)] Tprior (l’)

For normally distributed prior and likelihood pdfs we have

Tprior(T) X €xp {—; (z—2)TT, %, (z— x)} , (31)
m(u — (x)) ox exp (; fu = ii(2) = AT, o — () - a) : (32)

Similarly, we assume that the posterior pdf is normally distributed and is given by
) x 0 (5 (0 = D) Tpbyy (0= ) = 3 lu— ) T Db, - a0) - ), (39)

wherez € R"= is the mean of the prior pd§ € R+ is mean of the likelihood pdf,,,;,, € R"=*"= is the prior
covariance matrix, anfl.,...,, € R™*"« s the likelihood covariance.

3.1.2 MECE Likelihood

Assume we have a measuremgnt R™«+" and a deterministic model of the fora(z)(u + A) = f, as defined

in Eq. (22), where: € R™= is an unknown parameter, € R™ is the state solution , and e R"™* are the Lagrange
multipliers. Notice that measuremeptakes into consideration both the state solution and the Lagrange multipliers.
One can physically measure the state solution but not the Lagrange multipliers. However, we kndw-thaias

both optimality and feasibility are reached, allowing us to assume that the measured Lagrange multipliers are equal to
zero. Finally, the modeling and observation errors are modeled as additivenwisieh is mutually independent of
unknown parameters and measurements Thus, if we have a solution operator

h(z) = A" (@) f | h: R™ — Rt (34)
the MECE stochastic model is defined as R
Y=H(X)+X. (35)

Here, X: Q — R™%,Y: Q — R%Wt™ H: Q) — R% — Rt andX: Q — R reflects both the modeling
and observation errors. R

¥ and X have pdfre,ror[u — h(z)]: R — R andm.o-(z): R — R, respectively. The posterior pdf is
given by

Tpost ('T) X 7Tp’rio7‘(x)7rer7'or [U - h(l‘)]
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For normally distributed prior and likelihood pdf’s we have

Tprior (l‘) & exp |:; (.’t - E)T F;;lwr (x - i'):| ’ (36)

~ 1 ~ ~
Farrorly = )] o 0xp | =5l ) — T Tborly ~ o) — . (37
Similarly, we assume that the posterior pdf is normally distributed and is given by

o) X 50 | (0= 2)T b 0 =.3) = 5l = o) = T borly — o) e (38)

wherez € R"= is the mean of the prior pdf, € R« " is the mean of likelihood pdf;,;. € R™=*"= is the prior
covariance matrix, anH,,.,.,, € R(*utm)x(nutn1) s the likelihood covariance matrix.

3.1.3 ECE Likelihood

Assume we have a measuremgrt R™v. If an alternating directions approach is used, the parameter-to-observable
map becomes linear with respect to the unknown parameterR”=. This results in a deterministic model of the
formy — vx = 0, wherev € R™v. In the context of the ECE formulatiop,denotes the Neumann stress field and
v denotes the Dirichlet strain fieMup.

Consider that the modeling and observation errors are modeled as additive,valigeh is mutually independent
of the unknown parametarand measurements This leads to an ECE stochastic model of the form

YV =VX+3, (39)

whereX: Q — R",Y: Q —- R",V: Q — R"™, andX: Q — R"v reflects both modeling and observation errors.
Terror(y —v2): R™ — R andm,,or(z) : R™ — R denote the pdf oE and.X, respectively. The posterior pdf
is given by
Tpost (l‘) X 7T-prior(l‘)ﬂ-error(y - ’UJ)).

For normally distributed prior and likelihood pdf’s we have

m(x) o exp (—;(a: — J’U)TI‘;TliOT(x — x)) , (40)

1
Terror(Y — V) X €Xp <2(y —vx —e)TT,L . (y—ve — é)> . (42)
Similarly, assuming a normally distibuted posterior pdf we get
1 1 _ 1 ot _
TrPOSt(‘T) & exp 75(1 - x)TFprior(x - Sﬂ) - i(y — T = e)TFerror(y R 6) ) (42)

wherez € R"= is the mean of the prior pd§ € R"v is the mean of likelihood pdf,,;,, € R"=*"= is the prior
covariance matrix’.,...,» € R"v*"v is the likelihood covariance matrix.
3.2 MAP Estimate

In large-scale inverse problems, the posterior distribution lives in a high-dimensional space and sampling methods
become expensive and often unfeasible. For problems where the parameter-to-observable map is linear of the form
AX =Y:R" — R™ and the prior and likelihood pdf's are normally distributed, the posterior pdf can be taken

Volume 3, Number 4, 2013



302 Aguild, Swiler, & Urbina

as normally distributed [35]. In this case, point estimates and standard deviations of the unknown parameters can be
calculated using an MAP estimate approach.

Mathematically this approach can be described as follows: Given a linear parameter-to-observable map and nor-
mally distirbuted prior and likelihood pdf’s, the MAP estimate can be found by solving the following deterministic
optimization problem:

Tprap = arg maé(ﬂi%qlize (x| y). (43)

The possible nonexistence and nonunigueness of such problems indicate that the MAP estimate may be unsatisfactory.
However, if an efficient deterministic optimization strategy is used, the MAP estimate can yield information about the
mean and standard deviation of the parameter of interest when the posterior distribution lives in a high-dimensional
space.

This approach can be extended to problems where the parameter-to-observable map is nonlinear of the form
A(X)U =Y : R" — R"v. Similar to the linear case, the MAP estimate is found by solving Eq. (43). However, in
order to find an expression to calculate the posterior covariance, we linearize the opérajoat the equilibrium
point ;4 p. This linearization allows us to take advantage of the local stability of the linear approximation to the
operatorA(X) [28, 36].

3.2.1 Standard Likelihood

The standard stochastic model for this problem is given by Eq. (30). The respective normally distributed prior and
likelihood pdf’s are given by Eg. (31) and Eqg. (32). Then, the MAP estimate is obtained by maximizing the exponent
on Eg. (33), or by minimizing its negative as follows:

_ 1 Tl 1 . T 1 N _

zyap =argminimize - (z—2z)'T . (x—2)+ s [u—u(x) —€]"T .., [u—u(x)—é. (44)

ceR™ 2 P 2

The optimization scheme presented in Section 2.1 is utilized to solve the resulting deterministic optimization problem.
An approximation to the posterior covariance matrix is derived by linearizing the cost function in Eq. (44) around
the equilibrium point or MAP estimate. This results in an expression of the form
FIJOSt = [F;rlior + {ZJ« (x)TF;lu)'ra-E (I)} o .

wherel',.; € R"=*"= is the posterior covariance matrix, subscriptienotes partial differentiation with respect
to the unknown parametar, andu, is the sensitivity of the solution operator defined in Eq. (29) with respect to
the unknown parameter. Notice that the computation of the sensitivities requires the solutiptingfar system of
equations.

3.2.2 MECE Likelihood

The stochastic model for this problem is given by Eq. (35). The respective normally distributed prior and likelihood
pdf’s are given by Eq. (36) and Eq. (37). Then, the MAP estimate is given by maximizing the exponent on Eq. (38),
or by minimizing its negative as follows:

S 1 1 ~ ~
TyAp = argminimize o (= 2)T Ty (x —2) + 5[1/ —h(z) = &g 0, ly — h(z) — é]. (45)
zER™ }
The optimization scheme presented in Section 2.2 is utilized to solve the resulting deterministic optimization problem.
An approximation to the posterior covariance matrix is derived by linearizing the cost function in Eqg. (45) around
the MAP estimate. This results in an expression of the form

~ ~ —1
Tpost ~ [r—l e (2)TTIL R (1’)} ,

prior error'T
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whereT',,s; € R™*"= is the posterior covariance matrix, subscriptienotes partial differentiation with respect

to the unknown parametar, andh, is the sensitivity of the solution operator defined in Eq. (34) with respect to
the unknown parameter. Similar to the standard likelihood case, the computation of the sensitivities requires the
solution ofn,, linear system of equations.

3.2.3 ECE Likelihood

The stochastic model for this problem is given by Eq. (39). The normally distributed prior and likelihood pdf's are
given by Eqg. (40) and Eq. (41). Then, the MAP estimate is given by maximizing the exponent on Eq. (42), or by
minimizing its negative as follows:

TypAap = arg minei%lize %((E - j)TF;rlior(x - ;E) + %(y — VT = é)TFe_rlror(y — VT — é)' (46)
Notice that we have employed an alternating direction approach in order to use the stochastic model defined in Eq.
(39). Thus, the optimization scheme presented in Section 2.3 is used to solve the resulting deterministic optimization
problem.
The parameter-to-observable map for this problem is linear. Thus, the opdfatpis not linearized around the
MAP estimate. This results in an expression for the posterior covariance matrix of the form

Tpost = ()%, + 07T,

-1
prior e77’o7‘v) I

wherel',,,s; € R™ %"= is the posterior covariance matrix.

4. RESULTS

A numerical study was performed to test the proposed methodologies for deterministic and stochastic parameter
estimation. The numerical model consisted of a one-dimensional finite element model. Figure 1 shows a pictorial
description of the domain and boundary conditions used for the numerical study. The dbmaiif0, L], where
L=1m.0Onx =L, t=1Paandonz =0, u = 0. For the purpose of this case study, the surface tractions were
assumed to be known exactly, the body forces were takgn=a, and the penalty parametexsand3 were each set

to 1.

The observed displacement field for the parameter estimation problem was generated by solving one forward
finite element problem using the benchmark material properties. The numerical model used to generate the ‘observed
displacement field was built using a 2000 finite element mesh with fully integrated two-node line elements. The
numerical model used for the inversion was built using a 1000 finite element mesh with fully integrated two-node
line elements. Different levels of random Gaussian noise were consid&red, N (0, 1) with standard deviation
¢ = 0.0, 0.01, and0.05, to examine the accuracy of the proposed methodologies to corrupt data. The synthetic noisy
data are generated as follows:

at=ulx (1 +Cx4;), i=1,..., Nops,

7

whereu™ is the perturbed measured data ang, is the total number of observations.

i=1Pa

NSNS

-y
A

u=0"4 L

hN

FIG. 1: Simple schematic of the beam model used for the numerical studies.
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The misfit between the benchmark elastic moduliysand the optimal elastic modulus,,; was quantified as
follows:

N, 1/2
(B}~ Ely)’
€E = = - 172 )
> (&)
i=1

whereN, denotes the total number of parameters.
The following definition defined in [37] was used for the regularization operator:

R(E) = %/Q(V]JVEJ“E)” a0,

wherek > 0 is the regularization coefficient. This expression gives the flexibility of imposing Tikhonov regularization

when §; = 1, e = 0) and total variation regularization when £ 1/2,0 < ¢ < 1).

We compared many different variations of calibration methods (specifically, optimization of a cost functional,
nonlinear least-squares, Bayesian MCMC calibration, and MAP estimate), regularization type (Tikhonov vs total
variation), and problem formulation (specifically, MECE, and ECE). Table 1 shows the different combinations of
options that we examined and present in this study. Finally, all calculations were performed on a Linux workstation

with a 2.13 GHz Intel Core i7 processor and 8 GB of RAM.

4.1 Parameter Estimation: Deterministic Approach

For the constrained optimization approaches study herein we set the bounds to ¥ Ra10 Pa; the initial guess
E;n;; Was taken adv;,;; = 5 Pa. The constrained optimization problem was solved using the_sgpahethod in

DAKOTA [38]. The npsolsgp method is a sequential quadratic programming algorithm, which uses an augmented
Lagrangian merit function and a Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation to the Hessian of the
Lagrangian, and will not necessarily satisfy the constraints until the final solution. It uses a sufficient-decrease line

TABLE 1: Combinations of methods examined in this study

Calibration method Problem formulation | Regularization
L2
MECE Tikhonov
Constrained optimization ECE
of a cost function L?
MECE Total variation
ECE
Unconstrained optimization Standard
of a cost function: MECE None
Nonlinear least squares ECE
Standard likelihood
Bayesian MCMC MECE likelihood Gaussian prior
ECE likelihood
Standard likelihood
Bayesian MAP MECE likelihood Total variation
ECE likelihood
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search approach, which is a gradient-based line search for analytic or DAKOTA-supplied numerical gradients and is
a value-based line search in the vendor numerical case.

Figures 2 and 3 show the optimal elastic modulus field obtained for each of the constrained optimization ap-
proaches investigated in this work. For the case Wfthnoise in the data, the elastic modulus field predicted with
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FIG. 2: Predicted elastic modulus with 1% noise in the data for each constrained optimization approach investi-
gated. Left column: Predicted with TV regularization. Right column: Predictdd with Tikhonov regularization.

Here, the solid black line denotes the target elastic modulus field, the dashed line denotes the predicted elastic modu-
lus.
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FIG. 3: Predicted elastic modulus fiel# with 5% noise in the data for each constrained optimization approach
investigated. Left column: Predictddlwith TV regularization. Right column: Predictéddwith Tikhonov regulariza-

tion. Here, the solid black line denotes the target elastic modulus field, the dashed line denotes the predicted elastic
modulus.

each approach was close to the benchmark elastic modulus field, regardless of which regularization operator was im-
plemented. However, Tables 2 and 3 show that the reconstruction errors were lower when TV regularization was used
instead of Tikhonov regularization as the corruption in the observed data increased. For the ca%enwite in the

data, each optimization approach predicted an elastic modulus field that was close to the benchmark elastic modulus
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TABLE 2: Reconstruction errorsg for each constrained optimization ap-
proaches study herein. The results correspond to the case where Tikhonov
regularization was implemented

Noise . Number of iterations
Formulation K €E
C Niter
L? 1.0 x 1075 | 0.0269 557
0.0 MECE 1.0 x 1076 | 0.0267 557
ECE 1.0 x 10~* | 0.0167 6
L? 1.0 x 1073 | 0.1468 117
0.01 MECE 1.0 x 103 | 0.1460 117
ECE 1.0 x 10~ | 0.0201 6
L? 1.0 x 1072 | 0.2443 53
0.05 MECE 1.0 x 1072 | 0.2443 53
ECE 1.0 x 10~* | 0.0594 6

TABLE 3: Reconstruction errorsg for each constrained optimization approaches study
herein. The results correspond to the case where TV regularization was implemented

Noise . Number of iterations
Formulation K € €R

C Niter

L? 1.0x 1078 | 1.0 x 108 | 0.0368 222

0.0 MECE 1.0x 1078 | 1.0 x 10~ | 0.0366 321
ECE 1.0x107% | 1.0 x 107% | 0.0167 6

L? 1.0 x 107® | 1.0 x 10~ | 0.0999 192

0.01 MECE 1.0 x 107® | 1.0 x 10~ | 0.0954 162
ECE 1.0x 1076 | 1.0 x 10~% | 0.0206 6

L? 1.0 x 107* | 1.0 x 10~ | 0.1505 319

0.05 MECE 1.0x107* | 1.0 x 107% | 0.1321 217
ECE 1.0x 107° | 1.0 x 10~% | 0.0542 5

field only when TV regularization was implemented. Moreover, the optimization approach based on the ECE formula-
tion produced an elastic modulus field close to the benchmark solution with the least number of iterations, regardless
of which regularization operator was implemented.

The computational savings obtained with an approach based on the ECE formulation can be due to the convexity
property of the ECE cost functional, which has been shown to be convex for elliptic boundary value problems [39,
40]. To test the accuracy and precision of the constrained optimization approaches, several numerical experiments with
different initial guesses were done. The approach based on the ECE formulation consistently predicted accurate elastic
modulus fields with the fewest iterations. In some cases, the optimization approach based on the MECE formulation
provided accurate results with fewer iterations than the optimization approach based.8ridhraulation. However,
the results were not as consistent as those obtained when the ECE formulation was implemented. The authors are
not aware of an existing formal study that shows that the MECE cost functional is convex. However, Allix et al.
[41] performed a numerical study in which they showed that the MECE cost functional was convex for a linear
elastodynamic problem.

In the context of the regularization methods, notice that the reconstruction errors obtained with TV regularization
were less than those obtained with Tikhonov regularization as the corruption in the observed data increased. Indeed,
TV regularization has the ability to capture sharp discontinuities (see, e.g., [42]). Thus, one can effectively reconstruct
functions with jump discontinuities, which is the case in this numerical study. The results could be improved if an
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adequate method (e.qg., discrepancy principle method, L-curve method, and generalized cross-validation method) was
used to optimally select the regularization coefficienThe selection ok becomes crucial in most applications as
the corruption in the observed data increases. However, in this numerical stu@dg selected through numerical
experiments.

The unconstrained nonlinear least-square optimization was performed using the nl2sol optimization method in
DAKOTA. The nlI2sol algorithm is a secant-based least-squares algorithm tiauigerlinearly convergent, where
q denotes the quotient between two successive terms. It adaptively chooses between the Gauss-Newton Hessian ap-
proximation and this approximation augmented by a correction term from a secant update. nl2sol is more robust than
many Gauss-Newton-based least-squares solvers, which experience difficulty when the residuals at the solution are
significant. nl2sol is appropriate for large residual problems, i.e., least-squares problems for which the residuals do not
tend toward zero at the solution. In this numerical study we have 15 residuals from 15 experimental points. The elastic
modulus field was represented as an expansiaN,afadially symmetric RBF. The number of radial basis functions
was set to @ priori. The bounds for the RBF parameters were set to £Hg. < 10 Pa, 1 Pa< E; < 10 Pa, and
-2 < z; < 0. The initial guess was set 6. = 5 Pa,F; =5 Pa, and; = —1. Finally, the maximum number of ni2sol
iterations was set to 100.

Figure 4 shows the predicted elastic modulus field using an unconstrained NLLS approa&¥ aitk 1% noise
in the data. For the case wifl¥% noise in the data, each of the formulations investigated predicted elastic modulus
fields close to the benchmark solution. However, for the case Mitmoise in the data, only the NLLS approaches
based on the MECE and ECE formulations predicted elastic modulus fields close to the benchmark solution. Indeed,
the reconstruction errors shown in Table 4 support this claim. The MECE and ECE formulations seem to provide a
regularization behavior, which improves the quality of the reconstructions. Furthermore, the NLLS approach based
on the ECE formulation required the fewest iterations to predict an optimal elastic modulus field. However, the re-
construction errors obtained with the MECE formulations were the lowest out of the three formulations investigated
in this study. Finally, several numerical experiments with different initial guesses were performed to test the accuracy
and precision of each NLLS formulation. The NLLS approach based on the ECE formulation consistently predicted
elastic modulus fields close to the benchmark elastic modulus field with the fewest iterations. Furthermore, the stan-
dard NLLS formulation consistently produced the highest reconstruction errors as the corruption in the observed data
increased.

4.2 Parameter Estimation Under Uncertainty: MCMC Approach

This section presents the results of Bayesian calibration. A delayed rejection adaptive metropolis (DRAM) algorithm
was used to generate the posterior distribution. The DRAM algorithm used in this work can be fduttyt at
/Iwww.helsinki.fi/ ~ mijlaine/dram/ . DRAM is a combination of two ideas, delayed rejection and adaptive
Metropolis, for improving the efficiency of the Metropolis-Hastings MCMC algortihm [43]. The main idea of Delayed

TABLE 4: Reconstruction errorsg for each NLLS formu-
lation study herein

Noise . Number of iterations
Formulation €p
C Niter

Standard | 0.1275 56

0.0 MECE 0.1333 27
ECE 0.1401 4

Standard | 0.1174 21

0.01 MECE 0.1288 14
ECE 0.1782 6

Standard 0.5591 16

0.05 MECE 0.1317 28
ECE 0.2348 7
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FIG. 4: Predicted elastic modulus field obtained using the NLLS method. Left coluni¥ noise in the data. Right
column:1% noise in the data. Here the solid black line denotes the target elastic modulus field and the dashed line

denotes the predicted elastic modulus.

Rejection is to allow partial local adaptation of proposal within each time step of the Markov chain, while retaining
its property and reversibility [44]. In adaptive Metropolis, the covariance matrix of the Gaussian proposal distribution
is adapted on-the-fly using information from the previous chain. This adaptation destroys the Markovian property of
the chain. However, it can be formally shown that the ergodicity properties of the generated sample remain [45].
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The DRAM algorithm was used to generate 20,000 samples of the posterior parameter estimates and only the last
15,000 realizations were used to compute the relevant statistics. Due to the dimensionality of the problem, MCMC
methods can be difficult to implement and accurate posterior parameter estimates are difficult to attain. To achieve
a reduction in the dimension of the problem, the elastic modulus field was represented as an expasisicadpf
ally symmetric basis functions. Thus, posterior estimates of the RBF parameters were generated instead of posterior
estimates of the elastic modulus for each point in space. In this case study, five RBF were sefeitigdo repre-
sent the elastic modulus field. Finally, the bounds for each RBF parameter were set to those used in the NLLS case
study.

It is important to check convergence and mixing of the chain before analyzing the results. The simplest way is by
visualizing the trace plots of the chain. Figures 5—7 show the one-dimensional (1D) trace plots of the Markov chain
k for the parameters corresponding to one RBF. Visual inspection of the 1D trace plots suggests that the chain mixes
well for the last 15,000 samples, regardless of the likelihood model. This implies that the samples are indeed from the
stationary distribution of the Markov chain.

The autocorrelation function (ACF) is a useful tool to assess the convergence of a chain. If the standard deviation is
too large, the chain easily moves out of the posterior support. Most of the proposal samples will be rejected, resulting
in a long correlation. On the contrary, if the standard deviation is small, many of the proposal samples will be accepted
and the chain can only move around a small portion of the posterior space and mix poorly. An appropriate standard
deviation should resultin a fast decay of the ACF with a lag along the chain [46, 47]. Figure 8 shows the ACF for each
of the likelihood models investigated in this work. Notice that the ACF for the ECE likelihood model decays to zero
at a very small lag for each of the radial basis function parameters. This is consistent with the good mixing observed
in Figs. 5-7. However, the ACF plot shows that the standard and MECE likelihood models suffer from a slower rate
of convergence.

The posterior MCMC samples obtained for the parameters corresponding to one RBF are shown in Figs. 5-7.
Notice that the posterior pdf obtained with the ECE likelihood model displays less variability from the mean. Sev-
eral numerical experiments with different initial states were performed to verify that these results were consistently
reproduced. Indeed, from these numerical experiments it was observed that the posterior pdf obtained with the ECE
likelihood model consistently displayed less variability from its mean. Furthermore, from the numerical experiments
we noticed that the ECE likelihood model required fewer burn-in samples to reach a stationary distribution of the
Markov chain. However, the standard and MECE likelihood models resulted in better reconstructions as the corrup-
tion in the observed data increased; see Table 5. Overall, each of the likelihood models studied herein were capable
of producing accurate elastic modulus field estimates as the corruption in the observed data increased; see Fig. 9. The
only advantage seen was that the ECE likelihood model seems to required fewer burn-in samples to reach a stationary
distribution of the Markov chain, providing a regularization behavior.

TABLE 5: Bayesian calibration: Reconstruc-
tion errorse i; for each of the likelihood model
study herein. The RBF parameters mean were
used to compute the reconstruction errors

N‘yse Likelihood model | g
Standard 0.1169
0.0 MECE 0.1125
ECE 0.1192
Standard 0.1489
0.01 MECE 0.1173
ECE 0.1173
Standard 0.1205
0.05 MECE 0.1392
ECE 0.2217
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FIG. 5: Bayesian calibration withh% noise in the data: Left column: Trace plot for the matrix elastic modélus
Right column: Posterior pdf foF...

4.3 Parameter Estimation Under Uncertainty: MAP Estimate Approach

This section presents the results obtained with the MAP estimate approach. This approach produces the most likely
value of the posterior parameter distribution. The resulting statistical parameter estimation problem is equivalent to
solving a regularized deterministic optimization problem with Gaussian likelihood and prior. The problem was solved
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FIG. 6: Bayesian calibration wit’s% noise in the data: Left column: Trace plot for the elastic mod#ysat the
center of a radial basis function. Right column: Posterior pd#for

as a constrained optimization problem using the ngspl method in DAKOTA. The bounds were set to 1P# <
10 Pa and the initial guess was sefig,;; = 5 Pa.

The MAP method was investigated in the context of the standard, MECE, and ECE Bayesian formulations pre-
sented in Section 3.2. The discretization of Eqs. (44)—(46) is equivalent to the choice of Gaussian pdf for the prior and
likelihood functions
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with prior meanz = 0, likelihood meare = 0, T'¢,or = (B/h)I, @andl',,. ;0 = (k/h)I. Here,h = 1/1000 denotes
the element size andl is an identity matrix. Furthermore, we sgt= 1 and the parameters and+y to the values
shown in Table 3.

Figure 10 shows the posterior elastic modulus field predicted with the MAP estimate approach. The mean elastic
modulus fieldE predicted with the standard, MECE, and ECE Bayesian formulations were close to the benchmark
elastic modulus field. However, the accuracy of each prediction varied depending on which Bayesian formulation
was utilized. In the case where the standard and MECE Bayesian formulations were used, the mean estimates and
the standard deviations are almost similar. However, from the constrained optimization results shown in Table 2, we
notice that the elastic modulus fields predicted with the MECE formulation were closer to the benchmark solution
than the elastic modulus fields predicted with fireformulation, especially as the corruption in the observed data
increased. Furthermore, when the problem statistics were computed, the elastic modulus estimates predicted with
the L? formulation displayed an increase in the parameters standard deviation. One can argue that these results are
due to the weak enforcement of both the error in the observed data and the error in the constitutive equation into the
variational boundary value problem when the MECE Bayesian formulation is implemented. This weak enforcement of
both errors into the variational boundary value formulation seemed to provide a regularization behavior that reduced
the uncertainty in the solution.

In the case where the ECE Bayesian formulation was used, the elastic modulus field estimates predicted with the
ECE Bayesian approach were the most accurate of the three Bayesian MAP formulations studied herein. However,
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FIG. 9: Bayesian calibration: Elastic modulus field predicted with the RBF parameters mean. Left column: Predicted
elastic modulus field witts% noise in the data. Right column: Predicted elastic modulus field ¥§itmoise in the
data. Here, the solid line denotes the target elastic modulus field, the dashed line denotes the predicted elastic modulus.

these elastic modulus field estimates displayed higher variance from its mean than the elastic modulus field estimates
computed with the standard and MECE Bayesian formulations. One possible explanation for these high variances
is the strong imposition of the observed data as Dirichlet conditions. Thus, any uncertainty in the observed data is
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FIG. 10: MAP estimate results. Left column: Posterior elastic modulus field $éitmoise in the data. Right column:
Posterior elastic modulus field witt¥% noise in the data. Here, the solid line denotes the target elastic modulus field,

the dashed line denotes the predicted elastic modulus, and the dotted lines denote the elastic modulus upper and lower
bounds (i.e., meatt2 standard deviation).

directly passed into the deterministic model. Thus, for highly corrupted data, this approach can lead to inaccurate
mean estimates as well as high uncertainty in the solution.
Finally, the authors observed that the elastic modulus field estimates were sensitive to the regularization coefficient
k. For instance, for high values &f, the uncertainty in the mean estimates decreased and for low value# of

International Journal for Uncertainty Quantification



Deterministic and Stochastic Inverse Methods 317

increased. The uncertainty in the mean estimates is related to the corruption in the observed data. High levels of
corruption in the observed data will induce significant errors in the mean estimates. Regularization methods have
been developed to deal with these errors. As the corruption in the observed data increases, more regularization is
needed in order to prevent overfitting. The direct effect of increasing the regularization coefigehe smoothing

of the error surface; thus, the error surface becomes more convex. Hence, the uncertainty in the solution will decrease.
However, the accuracy of the mean estimate will suffer due to the smoothing of the error surface. Meanwhile, less
regularization is needed as the corruption in the observed data decreases. However, the possibility of multiple solutions
satisfying the problem constraints increases for lower valuas ®hus, the uncertainty in the elastic modulus field
estimates will increase.

5. CONCLUSIONS

This paper investigated the problem of parameter estimation in the context of constrained regularized optimization,
unconstrained optimization, and stochastic parameter estimation. For the constrained optimization approaches, we
investigated three formulationg2, MECE, and ECE formulations. We found that the MECE and ECE formulations
predicted accurate results in fewer iterations thanithéormulation, with the ECE formulation requiring the fewest
iterations. However, it is possible that the constrained optimization approach based on the ECE formulation can break
down for high levels of noise due to the strong imposition of the observed data as Dirichlet conditions. For this
reason, we expect that the MECE formulation will result in more accurate predictions than the ECE formulation
when the corruption in the observed data increases. In the context of the regularization methods, it was observed that
lower reconstruction errors were obtained when the TV regularization was used instead of Tikhonov regularization.
We expected to have such results given that TV regularization is an appropriate regularization method to use for
reconstructing discontinuous functions. For the unconstrained nonlinear least-squares approach, it was observed that
the elastic modulus field predicted with both the MECE and ECE formulations was more accurate than the elastic
modulus field obtained with the standard NLLS formulation. Moreover, the MECE and ECE formulations were more
tolerant to corruption in the observed data than the standard NLLS approach.

In the context of Bayesian calibration, the global convergence capability of MCMC algorithms lets all three
stochastic models yield elastic modulus field estimates close to the benchmark elastic modulus field. However, the
ECE stochastic model required fewer burn-in samples than the standard and MECE stochastic models to reach a sta-
tionary distribution of the Markov chain. Moreover, our study showed that the ECE likelihood formulation provides
a regularization behavior and improves the convergence of the Markov chain posterior. Yet, as in the deterministic
optimization methods case study, it is possible that the ECE likelihood formulation could break down for high levels
of noise in the data due to the strong imposition of the observed data as Dirichlet conditions.

For the MAP estimate approach, it was observed that the MECE and ECE formulations produced lower recon-
struction errors than the? formulations. Thus, the elastic modulus fields predicted with the stochastic models based
on the MECE and ECE formulations were closer to the benchmark solution. Furthermore, the results showed that
the MAP estimate approach based on the ECE formulation required the fewest iterations to yield an optimal elastic
modulus field. One main criticism of the MAP estimate approach is that it gives point estimates of the posterior pa-
rameter distribution, whereas the MCMC approach generates full posterior distribution via sampling. However, the
MAP estimate approach can serve as an alternative to MCMC methods for quantifying uncertainty in statistical inverse
problems that are governed by expensive numerical models and high-dimensional spaces.
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