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The striking generality and simplicity of Wilks’ method has made it popular for quantifying modeling uncertainty. A
conservative estimate of the confidence interval is obtained from a very limited set of randomly drawn model sample
values, with probability set by the assigned so-called stability. In contrast, the reproducibility of the estimated limits,
or robustness, is beyond our control as it is strongly dependent on the probability distribution of model results. The
inherent combination of random sampling and faithful estimation in Wilks’ approach is here shown to often result in
poor robustness. The estimated confidence interval is consequently not a well-defined measure of modeling uncertainty.
To remedy this deficiency, adjustments of Wilks’ approach as well as alternative novel, effective but less known ap-
proaches based on deterministic sampling are suggested. For illustration, the robustness of Wilks’ estimate for uniform
and normal model distributions are compared.
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1. INTRODUCTION

In critical applications where safety is a major concern, e.g., nuclear power plant operation, experiments may have
fatal consequences. By manipulating experimental key variables and monitoring the response of the system, conditions
under which the system becomes unstable, or fails entirely, may be revealed. However, such procedures are clearly
impractical and also intolerable for safety-critical systems as, e.g., a nuclear power plant [1]. Experiments are also
often very expensive and can only cover a part of the operational space. Consequently, modeling is an appealing
alternative. A truthful model of the system may also reveal high-risk situations triggered by rare but fatal events. Their
low probability of occurrence makes them unlikely to occur in the relatively few physical experiments that can be
performed, but they may be systematically studied with a model. Calibrated models [2–4] are traceable [5] to physical
observations, and/or vice versa, thereby contributing to a generalized traceability chain. Proper physical operation can
then be verified against accumulated knowledge (like nuclear physics) condensed in the model. Furthermore, modeling
can yield results on the uncertainties associated with the parameters of interest. Normally, in safety applications,
the uncertainty must be conservatively evaluated. More true than ever after Fisher’s pioneering work on statistical
inference [6], the reliability of our assessments of uncertainty is central. The existence of robust and versatile methods
to assess uncertainty are thus essential to justify the use of modeling. For wide utilization and acceptance such methods
also have to be simple (understandable by non-specialists) and effective (to allow for large complex models).

In the early 1940’s, Samuel Wilks derived conservative estimates of univariate tolerance limits of specimen char-
acteristics in mass production [7]. Later, Abraham Wald extended Wilks’ work to multivariate observations [8]. The
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proposed method has an extraordinary generality and simplicity. Translated into confidence intervals of modeling re-
sults [9–11], it has become ade factostandard in some fields of engineering. In its simplest form, the upper confidence
limit is, with a given probability, less than or equal to the largest value of a sample1 of a fairly small model ensem-
ble of results (typically 59, see below). It is obtained by evaluating the model for different parameter sets, randomly
drawn from a plausible probability distribution. The appealing simplicity of this approach has likely contributed to
its wide adoption. As defined, the stability of the method was thoroughly explored by Wilks, while the robustness of
the estimates was not addressed at all. Lack of robustness doesnot undermine Wilks’ approach, but the potentially
high volatility of its estimates of confidence limits may lead to practical challenges. For example, a regulatory author-
ity may need to know how much credibility can be associated with an estimated confidence interval for purposes of
establishing safety guidelines.

Faithful estimation of confidence intervals (CI)[x−[α], x
+
[α]] which directly addresses the enclosed probability, is

difficult and to some extent ill-posed. The problem is often circumvented bynotevaluating CIs faithfully, exchanging
an unreliable analysis with assumptions: Typically, a coverage factorkα is used to expand robust estimates of mean
and variance to a confidence interval [5]. It isassignedon the basis of a selected plausible probability density function
(pdf) f(x), rather than inferred. Then there is no problem of robustness, but also no lower limit on the validity as the
result is never better than the hypothesis behind the assignment. That is particularly important for a model with high
complexity which might render virtually any multi-variate probability distribution of calibrated parameters.

The problem of low robustness of faithful estimation of CIs is readily understood by studying sampling statistics
of the enclosed probability,

P (S) =
∫

S

f(x)dx, (1)

whereS contains a subdomain of the supportΨ(f) of the pdff(x) for the random observationx. Now, estimate
the CI S = [x̂−[α], x̂

+
[α]] and refer to the confidence level errorδP̂ ≡ P ([x̂−[α], x̂

+
[α]]) − α due to estimation errors

δx̂±[α] ≡ x̂±[α] − x±[α] as lack ofstability. Let therobustnessdescribe the uncertainty of the estimatesx̂±[α], i.e., the

variability of the errorsδx̂±[α]. The stability studied by Wilks has a regular dependence onδx̂±[α], since according to
the mean value theorem of integration,

δP̂ ≡
∑
±

δP̂± =
∑
±
±δx̂±[α]f(x̂±[α] + θ±δx̂±[α]), θ± ∈ [0, 1]. (2)

Thus, for anyε > 0 there is aη = ε/
∑
± |f(x̂±[α] + θ±δx̂±[α])| > 0 such that|δP̂ | < ε if |δx̂±[α]| < η. The reverse

does not hold however, since formax± |f(x̂±[α] + θ±δx̂±[α])| < |δP̂ |/2ε we find max± |δx̂±[α]| > ε. Robustness is
thus a stronger criterion than stability. Iff(x[α]±) has no finite (non-zero) lower bound,no faithful stochastic CI
estimator can be robust, meaning that there is no upper bound on|δx̂±[α]|. In that case there exists no bound on how
much a modeling errorδf(x) of the pdff(x) may be amplified to estimated CIs. Clearly, it may become critical
when theaspect ratioλ(α) ≡ min± f(x±[α])/ maxx f(x) is low. Robustness thus calls for attention for the ubiquitous
high-confidence estimates of shallow tail distributions, typicallyα = 95% limits of normal distributions (λ = 0.15).

Wilks estimated the tolerance range[x−[α], x
+
[α]] conservatively, from a sampled set{xk}n

1 of independent obser-
vations ofx. In contrast to a Bayesian approach it is applied in one step utilizing one finite set of sampled data but no
prior information. Requiring the enclosed probability to be at least as large as the confidence levelα with probability,
or level ofstabilityβ,

P
(
P ([x̂−[α]({xk}n

1 ), x̂+
[α]({xk}n

1 )]) ≥ α
)

= β, (3)

whereP labels sampling probability. This is equivalent to evaluating the lower confidence limit of the random quantity
P (x̂±[α]({xk}n

1 )), at levelβ. Given estimatorŝx±[α], Eq. (3) will fix the least required sample sizen, which was the pri-
mary goal of Wilks. Random sampling is here combined with faithful estimation of CIs. A potentially low robustness
is then further depleted by the slow convergence of random sampling [12]. The robustness, i.e., the reproducibility of
estimateŝx±[α] may thus be exceedingly poor ifβ is only moderate,λ is low, and the estimatorŝx±[α] are crude.

1To conform [7], a sample will here denote a complete set of values, not a single observation.
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Wilks obtained an explicit form of the sampling distribution ofP (x̂±[α]), which is general and entirely independent
of f(x). That makes statements of stability immune to faulty assumptions off(x), a very powerful aspect in per-
spective of the current practice of statistical modeling. In stark contrast, the robustness to be studied here is strongly
dependent onf(x).

The derivation and main results of Wilks’ method will be briefly recapitulated (Section 2), before robustness is
studied (Section 3). Suggestions of modifications (Section 4) and alternative approaches (Section 5) will then follow,
before the conclusion (Section 6) summarizes our findings.

2. WILKS’ METHOD

For risk assessment we are primarily interested in one-sided CIs, rather than the double-sided CIs addressed in the
original work [7]. The superscripts± of x̂[α] will therefore often be omitted in the following discussion. The common
practice described in Section 2.1 is a simplified version of the more general case discussed in Section 2.2.

2.1 Full Sampling Range

A conservatively estimated one-sided CI is readily found with a simple box counting experiment. First divide the
sample spaceS of a stochastic scalar observationx into disjoint subspacesS1 andS2,

S = S1 ∪ S2, S1 ∩ S2 = 0, P(x ∈ S1) = α, P(x ∈ S2) = 1− α. (4)

Then, draw a sample ofn independent values{xj}n
j=1 of x. Let nk denote the number of values in subspaceSk. The

probabilityβ of finding at least one value inS2 is given by

β ≡ P(n2 ≥ 1) = 1− P(n2 = 0) = 1−P(n1 = n) = 1−
n∏

j=1

P(xj ∈ S1) = 1− αn. (5)

Providedxk ∈ Sk impliesx1 ≤ (≥)x2, P(x̂[α] ≡ max(min)xk ∈ S2) = β. The most extreme samplêx[α] thus
provides a conservative estimate of the true CI limitx[α]. Since no sample value is excluded, the original, or full
sampling range is utilized. Equation (5) yields an explicit lower bound on the sample size,n ≥ log(1 − β)/ log(α).
Forα = 0.95 ≤ β, n ≥ 59.

2.2 Truncated Sample Range

In the original work of Wilks, the CI of interest was determined from a truncated sampling range. That is,x̂[α] ≡
x̃r, r ≥ 1, where{x̃k} is the ordered set of values{xj}, ascending or descending depending on whether the lower or
upper bound is estimated. The sampling range spanned by all sample values is here reduced, or truncated forr > 1
sincer−1 of the most extreme values are excluded. Truncation will generally result in better estimates, at the expense
of larger samples.

It is not necessary to derive the sampling density functiong(P ), even if Wilks did so. The sampling distribution
obtained by integratingg can be found directly by generalizing the box counting exercise of Section 2.1. As before
[Eq. (4)], divide the sample spaceS of a stochastic scalar observationx into disjoint subspacesS1 andS2. This time,
require at leastr values of the sample to belong toS2. The conjugated event is that0, 1, 2, . . . r − 1 values fall into
categoryS2. The probability of each such configuration withn2 = k is given byαn−k(1 − α)k. Since the order the

successive values are obtained is irrelevant, their number is given by the binomial coefficient

(
n
k

)
≡ n!/k!(n− k)!.

The sampling probability is thus given by

β ≡ P(n2 ≥ r) = 1−
r−1∑

k=0

P(n2 = k) = 1−
r−1∑

k=0

(
n
k

)
αn−k(1− α)k. (6)
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There is evidently a cost of additional sampling as the degree of truncationr is increased, sinceP(n2 ≥ r1) <
P(n2 ≥ r2), if r1 > r2. The robustness is however improved because more of the most extreme values are removed.
Equation (6) generalizes Eq. (5) in Section 2.1. Forα = 0.95 ≤ β andr = 1, 5, 10, n ≥ 59, 181, 311, respectively.

2.3 Sampling Density Function

The derivation by Wilks is here reproduced for a truncated sample range, but for one-sided instead of double-sided
CIs. The sampling pdfg(P ) of the enclosed probabilityP can be found by first dividing the sample spaceS of a
stochastic scalar observationx with pdf f(x) into three disjoint subspacesS1, dS, andS2, where the infinitesimal
intervaldS = dxn−r+1 containsx̃n−r+1 = x̂α. IntervalsS1 andS2 contain the remainingn− r andr − 1 samples,
respectively. The sampling probability of this configuration is infinitesimal,

dP = Pn−r(−∞, x̃n−r+1)f(x̃n−r+1)dx̃n−r+1P
r−1(x̃n−r+1,∞). (7)

The number of equivalent sets of sampled values is given by the same type of box counting experiment practiced in
Sections 2.1 and 2.2. For the current three subspaces, the binomial generalizes to the multinomial coefficient,

N =
n!

(n− r)!1!(r − 1)!
. (8)

The random variable of interest is the enclosed probabilityP associated with this sample,

P ≡ P (−∞, x̃n−r+1), → dP = f(x̃n−r+1)dx̃n−r+1. (9)

Collecting, Eqs. (7)–(9) results in

g(P ) =
n!

(n− r)!(r − 1)!
Pn−r(1− P )r−1. (10)

This one-sided sampling pdf corresponds to the double-sided one derived by Wilks [7, Eq. (1)]. The similarity and
difference of Eq. (10) to the well-known binomial distribution [6] is worth mentioning: The latter is discrete in a
number related tor, while the former is continuous inP ; r − 1 is also substituted withr in the binomial pdf. The
sampling distribution in Eq. (6) can be verified by integration,

β = P(P ≥ α) =
∫ 1

α

g(P )dP = G(1)−G(α), (11)

where the primitive functionG(P ) is found by repeatedly integrating Eq. 10 by parts,

G(P ) =
r−1∑

k=0

(
n
k

)
Pn−k(1− P )k. (12)

Inserting Eq. (12) into Eq. (11), Eq. (6) is obtained.
The sampling meanµP and sampling standard deviationσP of P can be evaluated using Eq. (10),

µP ≡ 〈P 〉 = 1− r

n + 1
, (13)

σP ≡
√
〈δ2P 〉 =

√
r(n + 1− r)

(n + 1)2(n + 2)
.

Their dependencies onr,β displayed in Fig. 1 are complicated sincen has a complex variation withr,β, implicitly
given by Eq. (6). Nevertheless, the graphsσP (r) andµP (r) are amazingly similar forα = 0.95, 0.99 (top, bottom),
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FIG. 1: Left: The sampling standard deviationσP (left) and sampling meanµP (right) of enclosed probabilityP [see
Eq. (13)], forα = 0.95 (top) andα = 0.99 (bottom). The confidence levelα is indicated for comparison (right, thin).

when scaled with the relevant range1− α. That is easily verified for the full sampling range (r = 1) for which there
is an explicit expression forn (Section 2.1),

r = 1 : µP = 1− σP + R(1− α)2, σP =
1− α

− log(1− β)
+ R(1− α)2, (14)

whereR(x) labels rest terms of orderx. Apparently there is a sum rule limited tor = 1, µP + σP = 1 + R(1− α)2,
for all values ofβ, which results in a significant skew forg(P ) sinceP ≤ 1. Most importantly, the standard deviation
σP appears to saturate at a finite non-zero level in the limit of very highβ andr. Hence, the pdfg(P ) cannot be
made arbitrarily narrow by selecting sufficiently large values ofr,β, as first might be expected. This will have direct
consequences for the robustness addressed in Section 3.

3. ROBUSTNESS

A general expression for the robustness, as defined by the confidence interval width of Wilks’ estimate, is derived
in Section 3.1. Examples of its magnitude are illustrated in Section 3.2. In addition, further insight into the issue of
robustness is provided by relating to classical hypothesis testing in Section 3.3.
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3.1 General

While the stability refers to the variability of the enclosed probabilityP (−∞, x̂[α] = x̃n−r+1), the robustness de-
scribes that of̂x[α]. Since the former is a function of the latter, the sampling or robustness pdf (h) is obtained from the
stability pdf (g) by a change of variable,

G(P ) =
∫

g(P )dP =
∫

g(P (x̂[α]))
dP

dx̂[α]
dx̂[α] =

∫
g(P (x̂[α]))f(x̂[α])dx̂[α] ≡

∫
h(x̂[α])dx̂[α]. (15)

Expressed in the pdff(x) of model resultsx,

h(x̂(±)
[α] ) = g

(
±

∫ x̂
(±)
[α]

∓∞
f(x)dx

)
f(x̂[α]) =

dG(P (x̂(±)
[α] ))

dx̂[α]
. (16)

The estimated confidence limit̂x(sα)
[α] is a random quantity. Preferably, it is transformed into asampled scaled

coverage factorq(sα)
[α] , normalized to the true coverage factork

(sα)
[α] ,

q
(sα)
[α] ≡ sα

x̂
(sα)
[α] − µx

k
(sα)
[α] σx

, (17)

whereµx andσx are the true mean and standard deviation, respectively, of the model resultsx. Due to the normal-
ization, perfect estimation corresponds toq

(sα)
[α] = 1. Consequently, the estimate is conservative ifq

(sα)
[α] > 1, while

it is invalid if q
(sα)
[α] < 1. Its normalized sampling confidence interval[q−(sα)

[γ,α] , q
+(sα)
[γ,α] ] for level γ is the equivalent of

sampling variance of estimation [13] for confidence intervals. The limitsq
sγ(sα)

[γ,α] also reflect the recursive symmetry
of evaluating a coverage factor of a coverage factor, with comparable meanings of confidence levelsα andγ, as well
as the signssα, sγ = ±1 indicate the respective upper and lower bounds. This suggests a universal measure∆(sα)

[γ,α]
of relative sampling variability,

∆(sα)
[γ,α] ≡ q

+(sα)
[γ,α] − q

−(sα)
[γ,α] : P

(
q
(sα)
[α] ∈

[
q
−(sα)
[γ,α] , q

+(sα)
[γ,α]

])
= γ. (18)

This unit-less width expresses therobustness, or precision2 as defined byγ, of q
(sα)
[α] at levelα. It is implicitly depen-

dent on the stabilityβ relating to the degree ofconservatismof estimation accuracy, and the truncationr describing
theutilizationof the sampled model values. As defined, high robustness corresponds to∆(sα)

[γ,α] ¿ 1.

The probabilistically symmetric double-sided CI[q−[γ,α], q
+
[γ,α]] must be determined implicitly,

G

(
P =

∫ µx±q±[γ,α]k[α]σx

−∞
f(x)dx, r,α,β

)
=

1± γ

2
, (19)

whereG(P, r,α, β) given by Eq. (12) is indirectly dependent onr,α,β via n(r,α, β) andr according to Eq. (6).
For the bound of the corresponding one-sided interval,γ becomes equivalent toβ. Up to a round-off error due

to the limitation of integer values ofn, r, the relationG(P (x̂(sα)
[α] ), r,α,β) = β is already fulfilled by the choice

of sample sizen [Eq. (6)], since this is the constraint of conservative estimation. That does not imply that the lack
of robustness expressed by the width∆[γ,α] of the double-sided CI is unimportant. A finite interval but not a single
bound can illustrate the volatility, or reproducibility of the estimate.

2The distinction between precision and accuracy is frequently emphasized, see, e.g., [14, pp. 9–14].
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3.2 Illustration

The robustness∆(sα)
[γ,α] defined by Eq. (18) varies strongly with the pdff(x) of model resultsx. The key aspect is

whether or not it is possible to achieve acceptable robustness, by setting the truncationr appropriately and require
enough stabilityβ.

As seen in Fig. 2 the robustness may be very low since the width of the pdfh(q[0.95]) is large for the common
normal distribution (top). It is however significantly higher for the uniform distribution (bottom). If the stabilityβ

is increased,h(q[0.95]) is shifted upward to reduce the risk of underestimation. The truncationr acts in the opposite
way, as it filters out the most extreme samples. To improve robustness, further truncation (r) is more effective than
increasing the stability (β). The computational cost of additional sampling for extreme stability and truncation appears
much higher than the gain (right). That is a direct consequence of the saturation of the width ofg(P ) on a finite level,
as also illustrated with the standard deviationσP in Fig. 1 (left). The fundamental problem of low robustness is
apparently difficult to resolve by more extensive sampling.
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FIG. 2: Left: The robustness illustrated by the pdfh(q[0.95]) of the scaled estimated one-sided upper coverage factor
q[0.95] [see Eq. (17)] of model resultsx, for normal (top) and uniform (bottom) pdfsf(x). It is evaluated for various
values of stabilityβ and truncationr, resulting in different minimum sample sizen. Right: The limit of very large
truncation and extreme stability.
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Increasing the confidence levelα, the least required sample sizen will increase according to Eq. (6). The pdfs
h(q[0.99]) corresponding to Fig. 2 are shown in Fig. 3. Despite the indirect complex dependence onα via n, h(q[α])
is very well maintained after shifting and scaling according to Eqs. (13). This agrees with the observed scaling of
µP andσP in Fig. 1 (top vs. bottom) and Eq. (14). Numerical values of the CI([q−0.95,α, q+

0.95,α] of robustness and
minimal sample sizesn are summarized in Table A.1. For the common choice ofα = 0.95 ≤ β (Section 2.1),
a variation of the estimated boundq[0.95] with no less than a factor of 2 is possible: For the normal distribution
([q−[0.95,0.95], q

+
[0.95,0.95]] = [0.94, 2.03], while ([q−[0.95,0.95], q

+
[0.95,0.95]] = [0.98, 1.11] for the uniform distribution.

That is consistent with the general statement that more confined distributions with larger aspect ratiosλ yield more
robust estimatesq[α]. The dependence is clearly very strong. The generic problem of low robustness caused by the
combination of faithful estimation of CIs and random sampling is apparently difficult to resolve for distributions with
low aspect ratiosλ.
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FIG. 3: Left: The robustness illustrated by the pdfh(q[0.99]) of the scaled estimated one-sided upper coverage factor
q[0.99] [see Eq. (17)] of model resultsx, for normal (top) and uniform (bottom) pdfsf(x). It is evaluated for various
values of stabilityβ and truncationr, resulting in different minimum sample sizen. Right: The limit of very large
truncation and extreme stability.
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3.3 Relation to Statistical Hypothesis Testing

On first sight, the problem of estimation and robustness ofx[α] appears to be closely related to classical hypothesis
testing [6]. A sample ofn values is drawn from the population of model resultsx. A characteristic of the infinite
population is then inferred from statistics of the finite sample. Specifically, the probability1 − β of obtaining a non-
conservative, i.e., failing estimate of the CI appears related to the so-calledp value. It expresses the probability of
obtaining an estimate as extreme as the actual, given a correct null hypothesis, and is the principal tool of rejec-
tion.

On second thought, there are distinct differences. The population meanµ is often the main attribute and the sample
meanµ̂ the obvious algebraic statistic to be used for testing. Here it is instead the confidence interval limitx[α] that
is to be estimated, and Wilks’ method provides anorder statistic. Since the latter is a consequence of ordering, rather
than algebraic summation as for the mean, the relation between the distributions ofx andx̂[α] is much less obvious
than betweenx andµ̂. Therefore, the standard deviation std(x̂[α]) over different samples cannot be determined from
std(x) for a single sample. The standard procedure to directly relate intersample statistics to intrasample statistics,
such as std(µ̂) = std(x)/

√
n, thus cannot be applied.

However, forx̂[α] the entire distributionh(x̂[α]) in Eq. (16) has been derived from first principles. It is thus
possible to calculate (not estimate) std(x̂[α]) explicitly, for the cost of derivingh. The standard deviation is thus
known, providedf(x) is correctly assigned. Similar assumptions of distributions are indeed required in conventional
testing.

Generally,h(x̂[α]) is not normal [see Figs. 2 and 3 ofh(q) above, and note that the affine mappingx̂[α] → q in
Eq. (17) only rescales and translatesh]. This violates conventional procedures of testing, since the sample statistic
usually is assumed normal distributed when the standard deviation is known.

The central limit theorem states that the distribution of the sample mean tends to normal, as the sample size
increases. That is indeed a highly useful fact in conventional testing based on sample mean, as it makes assumptions
of normal distribution legitimate. It is not applicable for Wilks’ estimate based on ordering of sample values. Little
can be said abouth(x̂[α]), except than it can be calculated and strongly depends onf(x).

Formulated in terms of classical statistical testing, the null hypothesis should relate to the quantity of interest,
i.e., the true CI of the model,x[α] ≤ x̃n−r+1 for an upper andx[α] ≥ x̃n−r+1 for a lower bound, respectively. Note
that the statistical model represents the truth, with given certain CI limits. In classical testing, an appropriate statistic
would be evaluated to determine thep value from the distribution associated with that statistic. The inverse problem
here is to setp = 1−β and not determine any corresponding one-sided statistic but the values ofn, r which results in
thatp, not the reverse. This procedure is closely related to conventional determination of CIs using hypothesis testing,
except that there is no statistic involved. Instead there is an explicit non-trivial relation to the CI limits. The least value
of n, for givenr, would then correspond to the highest allowedp value (in some literature denotedα) for rejecting the
null hypothesis.

4. CREDIBLE APPLICATION OF WILKS’ METHOD

In this section modifications of Wilks’ approach are presented. The principal aspect is that the uncertainty of the
estimate reduces its reliability well below the confidence levelα. The acceptable marginα has in fact already been
’consumed’ by the true bound of the model, which leaves nothing for its estimation: If the probability of obtaining a
conservative estimate isβ and the quantity itself describes a probabilityα of capturing the most extreme scenario, the
total probability of making a conservative prediction will be at leastα̃ = βα. To distinguish it from the confidence
levelα, α̃ will be labeledcredible level.

4.1 Credibility

The credible level aggregates two sources of failing assessments, the uncertainty of model results and our limited
ability of evaluating this uncertainty from a random sample. As in Bayesian estimation [15], the idea is to incorporate
all known sources of uncertainty and describe the state of knowledge of the observer, rather than a physical variability.
There is indeed also a mathematical similarity with Bayes’ theorem: The overall goal is to guarantee, with a certain
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probability (credibilityα̃), that the true but unknown physical resultx is less (larger) than, or equal to an estimatex̂[α]

of the true upper (lower) boundx[α] of the model with confidenceα,

P (
x ≤ (≥)x̂[α]

) ≥ P (
x ≤ (≥)x̂[α]|x̂[α] ≥ (≤)x[α]

) · P(x̂[α] ≥ (≤)x[α])
≥ P(x ≤ (≥)x[α]) · P(x̂[α] ≥ (≤)x[α]) = αβ ≡ α̃. (20)

The first inequality stems from the fact that the possibilityx̂[α] < (>)x[α] is excluded, while the second results from
a reduction of the interval. The probability of making a correct assessment is thusat leastα̃, not necessarily or even
likely equality. Several layers of conservatism are thus embedded inα̃. That is acceptable in critical applications where
a failing prediction often spells disaster. The second expression also resembles Bayes’ theorem for the posterior prob-
ability, being a product of likelihood and prior information. Estimatingx̂[α] is indeed prior to the targeted comparison
between modeled and physical results. However, the similarity merely reflects that both analyze sequential events with
conditional probabilities.

The renormalized probability of false prediction1− α̃ is close to twice as large as1−α for α = β. For instance,
when estimating anα = 0.95 confidence limit we obtain ãα = 0.952 ≈ 0.90 credible bound. The assigned confidence
levels of modeling (α) and estimation (β) must bothalwaysbe set larger than the desired credible level (α̃), α,β > α̃,
e.g.β = α =

√
0.95 ≈ 0.975 results in a credible level of0.95. Since the larger value ofα,β will increase the least

number of samples (n), accounting for the limited robustness will require additional sampling.

4.2 Modifications

Following Wilks’ approach as it is currently practiced (Section 2) there are at least three possible modifications
of interpretation and/or application, which translate an acceptable confidence level into a credible level describing
the probability of making false predictions. These adjustments will not alter the method as such, but change the
interpretation (1), add safety margins (2), or modify the acceptance criterion (3):

1. Accept the elevated probability1− α̂ = 1− αβ of failing bounds.

2. Apply an additional safety marginw[α] to Wilks’ estimatêx[α] to compensate for its limited robustness [see Eq.
(21) below]. Since the least number of model evaluationsn then is kept, the obvious advantage is that existing
results easily can be adjusted without additional model evaluations. The disadvantages are thatw[α] depends
strongly on the pdff(x) of model results and that̃α < α makes it impossible to strictly maintain the officially
accepted probability of failure. The ambition to restore that risk must be held back, sinceα̃ → α generally
impliesw[α] →∞, if f(x) does not have compact support.

3. Adjustment ofα andβ. That will increase the least number of samplesn substantially. The advantages are that
the result will apply for any pdff(x) of model results, and no extra safety factor needs to be included (as in 2
above). The obvious disadvantages are that the efficiency is drastically reduced and existing results cannot be
recycled and needs to be complemented with further sampling of the model. If not all of ther − 1 excluded
most extreme model results are known, full re-evaluation is required.

In alternative 2, the marginw[γ] is calculated for a different stability levelγ > β, such thatP(x̂[α] ≥ (≤)x[α]) =
γ, from h(x̂[α]) instead of increasingn in Eq. (6). To achievẽα ≈ α, 1 − γ ¿ 1 − α. A reasonable compromise
might be to setγ = 1− (1− α)/5, or γ = 1− (1− α)/10 (practiced in Table B.1 and B.2). The estimated bound is
adjusted as

x̂[α] → µ̂ + w[γ,α,β,r] ·
(
x̂[α] − µ̂

)
, w[γ,α,β,r] =

1
q[γ,α]

, (21)

where additional subscripts ofw indicate dependencies andµ̂ is the sample mean, or equivalent best estimate of model
results. Examples of correction factorsw[γ,α] (fixedn) are given in Table B.1 (alt. 2), while the enlarged sample sizes
are compared to the original in Table B.2 (alt. 3). Note that for a given credible levelα̃ some combinations ofβ, α
are more efficient (lowern) than others. It should come as no surprise that it may be more profitable to distribute our
margin of failure betweenα andβ in one specific way, than any other.
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5. ALTERNATIVE DETERMINISTIC METHODS

There is one principal distinction between applications such as the one addressed by Wilks, and the evaluation of
modeling uncertainty considered here. Direct physical sampling as practiced by Wilks makes no reference to the
sources of uncertainty whatsoever. It is drastically different for modeling uncertainty, which results from a known
uncertain model. Such models provide detailed information of the sources of uncertainty. While Wilks addressed
the statisticalproblem of analyzing a finite set of randomly drawn samples, the evaluation of modeling uncertainty
constitutes thedeterministicproblem ofuncertainty propagation. In the latter but not the former case, an exact result
can in principle be found. Consequently, Wilks’ method has here been applied to solve a problem it wasnot primarily
designed for.

The existence and utilization of knowledge are key ingredients for the quality of any calculation. Specifically,
uncertainty propagation but not physical samplingrequiresknowledge of a model structure and input uncertainties.
Applying Wilks’ method only a minor part of this information is explored by chance. A much better method would be
to systematicallyexplore all relevant pieces of information, as efficiently as possible. Sampling may still be used, but
with all sample points calculated deterministically, using best available samplingrules. From the completely general
perspective that the more and the better utilization of information the higher quality of the result, we expect that fully
deterministic sampling(DS) is superior to random sampling (RS). The hallmark of DS is that repeated sampling yields
identical samples without any variation between corresponding sample values, and represents the whole statistical
population from which any RS sample is drawn. Thus in contrast to RS, DS does not suffer from sampling variance
[6] of any kind.

Indeed, partial DS [16, Fig. 2, p. 61] is a common way to improve brute force RS. Any kind of stratification
is a deterministic operation. In Latin hypercube sampling techniques (LHS) [17], stratification is combined with
exclusion criteria (any stratum of any parameter should be sampled once and only once). Hence, LHS contains two
deterministic operations, stratification and exclusion. Orthogonal sampling [18] makes use of an additional second
layer of stratification, with subspaces containing several strata. As the degree of determinism increases, the distribution
of samples improves, which reduces the sampling variance and consequently increases the efficiency. It is plausible
to assume that the quality of the result continues to improve as the degree of determinism increase further, providing
the rules are good. As long as no apparent limit is known beyond which further determinism is not profitable, it is
quite plausible that the best sampling strategy is entirely deterministic. A well-known example of such a method is
the unscented Kalman filter [19].

The issue of robustness is avoided entirely with DS. Estimated bounds will be perfectly repeatable and repro-
ducible. Excessive noise systematically fed into the analysis by the process of randomized sampling is avoided. Ef-
fectively, a finite sampling variance is substituted with a finite sampling error. Provided that error can be controlled,
such an approach is superior for regulatory authorities since any specific modeling task can be repeated by anyone
with identical results.

An extension to Wilks’ approach beyond the scope of our current study is sequential processing of information by
means of Bayesian analysis. It can be evaluated with RS [3] as well as DS [4] methods. Especially for small samples,
Bayesian methods are often superior provided assumptions of probability distributions hold.

By setting acceptance limits according to expected errors as in Section 4.2, the risk of failing risk assessment
should be manageable. An elevated safety margin is thereby traded for fairness. For comparisons of different cal-
culations or models, a minor common systematic error of evaluation is much easier to accept than a large sampling
variance, which arbitrarily and unpredictably penalizes some calculations more than others.

In the original application of Wilks’ method for evaluating tolerance limits, the independence of the pdff(x) is
a major advantage since it provides immunity against false assignments of input statistics. For evaluating modeling
uncertainty though, the samples are generated from an assigned distribution. The result is therefore nevertheless
strongly dependent onf(x), which lifts the immunity completely. Then there is no generic preference of generality
for Wilks’ method, compared to other methods of uncertainty propagation requiring explicit assignment of input
statistics.

As many methods based on RS, Wilks’ does not suffer from the curse of dimensionality, which is the main obsta-
cle for sampling on large grids or integration by conventional quadrature methods. The proposed efficient methods of
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deterministic sampling [4, 12, 20] have comparatively mild dependencies on dimensionality, due to very sparse sam-
pling and low or moderate requirements on the fidelity of surrogate models. Often, the number of samples increases
linearly with dimensionality. There is also a natural limit of how many uncertain parameters that may contribute sub-
stantially to the resulting modeling uncertainty. The advantage of Wilks’ method of being essentially independent on
dimensionality is thus relatively insignificant in practice.

The uncertainty can be deterministically propagated through any monotonic non-linear univariate modely(θ)
without any error by evaluating the model at the confidence limits,[y−, y+] = [min± y(θ±),max± y(θ±)]. For
multi-variate models withj parameters, the confidence limits are generalized into confidence boundaries (CB) in
parameter space of dimensionj − 1. There is one CB for one-sided and two CBs for double-sided intervals. For
many parameters, the topology is non-trivial and it is generally impossible to evaluate[y−, y+] exactly, but often
with remarkable accuracy. The only error sources are the assignment of the pdff(x), which in the present context
is unavoidable, and the error of the method to determine the CB(-s). Recently, we proposed such a novel approach
based on DS on CBs [20]. In that case, the CBs were determined with surrogate models found by linear regression.
The main disadvantage of the methodology is that the CBs are unique for each point of the result. For instance, for a
signal evaluated in100 time instants no less than200 CBs must be determined. However, for integral quantities like
total energy, there will only be one (one-sided) or two (double-sided) CBs. The number of model samples required
to find a linear surrogate model and sample on the CB(-s) is not larger thanj + 3. For a typical number of relevant
parametersj = 10, only12 model evaluations are needed for one-sided CIs. Besides absolute robustness the efficiency
is in this case about five times better than the default application of Wilks’ method today (described in the end of
Section 2.1).

For evaluating CIs of high-dimensional field quantities calculated with typical computational fluid dynamics,
electro-magnetic, or structural mechanics models, it is more efficient and convenient to propagate parameter statis-
tics than sample on CBs. Any CI will then have to be calculated non-faithfully by expansion with coverage factors,
as mentioned in Section 1. That inherent limitation of accuracy is of minor importance for two reasons. Firstly, the
distribution of model parameters is generically multi-variate. Properly identified models will, almost without ex-
ception, exhibit relatively strong dependencies. Such complex pdfs will hardly ever be accurately known beyond
the lowest statistical moments, typically the first (mean) and second (covariance). Anything close to faithful eval-
uation of CIs is then genuinely impossible because of a fundamental lack of information. Secondly, non-faithful
evaluation of CIs is an accepted and establishedde factostandard practiced in many fields of science and tech-
nology. The knowledge of coverage factors is most often exceedingly vague. The only motivation to report CIs
and not low-order statistics appears to be that CIs often are considered more “understandable,” than for instance
a conservative bound scaled with standard deviation(σ), like 2σ or 3σ. Non-faithful CIs should be regarded as
what they are, hypothetically expanded statistics with no measure of reliability comparable to stabilityβ in Wilks’
method.

There are numerous deterministic methods for non-linear propagation of model statistics [12, 19], which could
provide viable alternatives to Wilks’ method. Complex analysis such as identification of models and evaluation of
reliability comparable toβ is of major importance and supported by DS [4]. The methodology is novel and currently
in development and has not yet been widely employed. A complete survey of selected deterministic alternatives to
Wilks’ method is beyond the scope of the present study and will be presented elsewhere.

6. CONCLUSIONS

Wilks’ approach for conservative estimates may be simple and practical but low robustness makes them volatile
measures of modeling uncertainty. Our study illustrates that the difference between a one-sided confidence bound
estimated with Wilks’ method and the expected result may be no less than twice as large as the true one, equiv-
alent to about100% relative uncertainty. That may cause problems in the evaluation of different competing mod-
els.

The potentially low robustness of Wilks’ methodology is caused by the combination of faithful evaluation of CIs
and slowly converging random sampling. To remedy this deficiency, a novel perspective on Wilks’ approach was
proposed. It focuses on the composite set of comparisons, the estimated with the true bound of the model, and the
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model bound with the physical value. Combining the probability of success of both, the true physical result is covered
by the estimate with a probability at least as large as its so-calledcredibility level.

Expected levels of robustness for conventional application of Wilks’ method were given for some common cases.
Robustness can only be improved to a certain extent by excessive sampling. When the robustness of Wilks’ method is
unsatisfactory, our methods of choice belongs to the novel class of highly efficient deterministic uncertainty prop-
agation techniques. These are completely robust, but may suffer from systematic errors. A brief survey was in-
cluded.
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APPENDIX A. TYPICAL VALUES OF ROBUSTNESS AND SAMPLE SIZE

Expected levels of robustness (∆[γ,α]) and efficiency (n) of Wilks’ conservative estimate of one-side CIs are indicated
in Table A.1, for a selection of cases. Coverage factors are normalized to their true values to clearly display the relative
errors.

TABLE A.1: Least required sample sizen, the sampling interval
[q−[0.95,α], q

+
[0.95,α]] and the robustness∆[0.95,α], defined in Eq. (18). The eval-

uation is made for different pdfsf(x) (NRM: Normal, UNI: Uniform) with
aspect ratioλ defined in Section 1, levels of truncationr, stabilityβ, and con-
fidence levelsα of modeling (x)

f(x) λ r β α n [q−[0.95,α], q
+
[0.95,α]] ∆[0.95,α]

NRM 0.15 1 0.95 0.95 59 [0.94, 2.03] 1.08
NRM 0.15 1 0.99 0.95 90 [1.06, 2.10] 1.03
NRM 0.15 1 0.95 0.99 299 [0.97, 1.62] 0.65
NRM 0.15 1 0.99 0.99 459 [1.04, 1.66] 0.63

NRM 0.15 5 0.95 0.95 181 [0.97, 1.44] 0.47
NRM 0.15 5 0.99 0.95 229 [1.04, 1.49] 0.45
NRM 0.15 5 0.95 0.99 913 [0.98, 1.25] 0.27
NRM 0.15 5 0.99 0.99 1157 [1.02, 1.28] 0.26

NRM 0.15 10 0.95 0.95 311 [0.98, 1.31] 0.34
NRM 0.15 10 0.99 0.95 371 [1.03, 1.35] 0.33
NRM 0.15 10 0.95 0.99 1568 [0.99, 1.18] 0.19
NRM 0.15 10 0.99 0.99 1874 [1.02, 1.20] 0.19

UNI 1.00 1 0.95 0.95 59 [0.98, 1.11] 0.13
UNI 1.00 1 0.99 0.95 90 [1.02, 1.11] 0.09
UNI 1.00 1 0.95 0.99 299 [1.00, 1.02] 0.02
UNI 1.00 1 0.99 0.99 459 [1.00, 1.02] 0.02

UNI 1.00 5 0.95 0.95 181 [0.99, 1.09] 0.10
UNI 1.00 5 0.99 0.95 229 [1.01, 1.10] 0.08
UNI 1.00 5 0.95 0.99 913 [1.00, 1.02] 0.02
UNI 1.00 5 0.99 0.99 1157 [1.00, 1.02] 0.02

UNI 1.00 10 0.95 0.95 311 [0.99, 1.08] 0.09
UNI 1.00 10 0.99 0.95 371 [1.01, 1.08] 0.07
UNI 1.00 10 0.95 0.99 1568 [1.00, 1.01] 0.02
UNI 1.00 10 0.99 0.99 1874 [1.00, 1.02] 0.01

APPENDIX B. CREDIBLE BOUNDS

The adjustment factorsw[α] for sub-sampling of the model are indicated in Table B.1, while the enlarged sample sizes
n for full sampling are listed in Table B.2, for a selection of cases. For comparison, numbers of the corresponding
current application of Wilks’ method are included, where confidence levels play the role of credible levels.
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TABLE B.1: Adjustment factorw[α] for credible application of
Wilks’ method [Eq. (21)], for letting the credible level̃α = α · γ
approach the accepted confidence level with the proposed choice
γ(k) ≡ 1 − (1 − α)/k. The evaluation is made for the different
pdfsf(x) in Table A.1 (NRM, UNI), levels of truncationr, stability
β, and confidence levelsα : α = β. The least required sample size
n is then preserved

r γ α α̃ w[α], NRM w[α], UNI

1 0.950 0.950 0.902 1.00 1.00
1 0.990 = γ(5) 0.950 0.940 1.14 1.06
1 0.995 = γ(10) 0.950 0.945 1.20 1.09
1 0.990 0.990 0.980 1.00 1.00
1 0.998 = γ(5) 0.990 0.988 1.05 1.01
1 0.999 = γ(10) 0.990 0.989 1.07 1.01
5 0.950 0.950 0.902 1.00 1.00
5 0.990 = γ(5) 0.950 0.940 1.07 1.03
5 0.995 = γ(10) 0.950 0.945 1.10 1.04
5 0.990 0.990 0.980 1.00 1.00
5 0.998 = γ(5) 0.990 0.988 1.03 1.00
5 0.999 = γ(10) 0.990 0.989 1.04 1.01
10 0.950 0.950 0.902 1.00 1.00
10 0.990 = γ(5) 0.950 0.940 1.05 1.02
10 0.995 = γ(10) 0.950 0.945 1.08 1.03
10 0.990 0.990 0.980 1.00 1.00
10 0.998 = γ(5) 0.990 0.988 1.02 1.00
10 0.999 = γ(10) 0.990 0.989 1.03 1.00

TABLE B.2: The credible level̃α = α · β and the least required sample sizen, for Wilks’
conservative estimatêx[α] of the one-sided confidence limitx[α], for different levels of
truncationr, stabilityβ, and confidence levelsα. Sinceγ = β, w[α] = 1 (see Table B.1).
A givenα¦ is almost transformed intõα with the proposed choiceγ(k) ≡ 1− (1−α¦)/k.
The supplementary caseα = β = γ =

√
α¦γ(5) illustrates that differentn may yield the

sameα̃

β = γ α α̃ n(r = 1) n(r = 5) n(r = 10)

0.950 0.950 = α¦ 0.902 59 181 311
0.990 = γ(5) 0.950 0.940 90 229 371

0.970 =
√

α¦γ(5) 0.970 =
√

α¦γ(5) 0.940 115 327 550
0.995 = γ(10) 0.950 0.945 104 248 395

0.990 0.990 = α¦ 0.980 459 1157 1874
0.998 = γ(5) 0.990 0.988 619 1382 2148

0.994 =
√

α¦γ(5) 0.994 =
√

α¦γ(5) 0.988 849 2049 3271
0.999 = γ(10) 0.990 0.989 688 1475 2259
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