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The number and cost of claims that will arise from each policy of an insurance company’s portfolio are unknown. In
fact, there is a high degree of uncertainty on how much will ultimately be the cost of claims, not only during the period
of inception but also after the contract termination, since there might be future, not yet reported, losses associated
with past claims. Therefore, in practice, insurance companies have to protect themselves against the possibility of this
ultimate cost by creating an additional reserve known as the incurred but not reported (IBNR) reserve. This work
introduces new non-parametric models to IBNR estimation based on kernel methods; namely, support vector regression
and Gaussian process regression. These are used to learn certain types of nonlinear structures present in claims data
using the residuals produced by a benchmark IBNR estimation model, Mack’s chain ladder. The proposed models are
then compared to Mack’s model using real data examples. Our results show that the three new proposed models are
competitive when compared to Mack’s benchmark model: they may produce the closest predictions of IBNR and also
more accurate estimates, given that the variance for the reserve estimation, obtained through the bootstrap technique,
is usually smaller than the one given by Mack’s model.
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1. INTRODUCTION

When an insurance policy is written it, typically will, cover a defined period from inception. In non-life insurance,
claims incurred during this period due to physical damage or theft are often reported and settled quickly [1]. However,
in other types of insurance, the time between a claim event and the determination of the amount to pay for this claim
can be considerably large. So, on a portfolio of an insurance company the number and cost of claims that will arise
from each of its policies are unknown. Indeed, at expiry of a policy there can be a high degree of uncertainty as to what
the cost of claims will ultimately be since there might be future, not yet reported, losses associated with past claims.
In practice, insurance companies have to protect themselves against the possibility of this ultimate cost by creating an
additional reserve known as the incurred but not reported (IBNR) reserve. More precisely, this reserve corresponds to
the total amount owed by the insurer to all valid claimants who have had a covered loss but have not yet reported it. A
satisfactory estimate of such reserve can be made only through statistical techniques and in this article we propose a
new non-parametric method to estimate it.
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Several estimators for IBNR reserves have been proposed in the literature since the original work of Tarbell in
1934 [2], where the deterministic chain-ladder method was introduced. Mack derived a stochastic model to explain
the chain-ladder method [3, 4] and several recent works have tried to reduce the variance of the reserve entailed by
Mack’s chain-ladder model (for example [5–7], just to cite a few). The majority of these models are constructed from
the runoff triangle, which corresponds to an incompleten × n matrix C. In this matrix, only the elementsci,j with
j ≤ n− i + 1 are known, and they correspond to the cumulative paid out amounts with respect to the accident period
(month, year,...)i, i ∈ {1, ..., n}, up to and including the development periodj. To estimate the IBNR reserve, all
these cited methods run algorithms to fill the unknown entries ofC using the given data. Table 1 shows an example of
a runoff triangle from the historical loss development study related to the automatic facultative general liability (AFG)
[8]. The most popular method used to complete the runoff triangle is the chain-ladder, which estimates outstanding
claims by projecting into the future a weighted average of past claim developments.

1.1 Contribution

The main contribution of our article is to present a new hybrid model for IBNR reserve estimation. It works in two
stages. In the first stage, the method relies on the most popular method for IBNR estimation, the Mack’s chain ladder,
to obtain a prediction for IBNR reserve. In the second stage, it uses kernel-based regression methods to statistically
learn from the residuals of the previous stage, assuming that further nonlinear structure can be estimated from them.
The proposed method is very simple to implement and shows good results on real data.

1.2 Paper Outline

Section 2 gives an overview of the Mack’s chain-ladder model. Section 3 gives a brief introduction to kernel-based
methods for regression. Section 4 introduces the hybrid model. Section 5 shows the results and compares the proposed
method to other classical methods. Section 6 proposes a bootstrap strategy to estimate the variance of the new method.
Finally, Section 7 concludes the work and points out a future direction for research.

2. THE CHAIN-LADDER IBNR RESERVE ESTIMATOR

Mack was the first to propose a stochastic model for IBNR reserve estimation [3]. This section introduces Mack’s
chain-ladder (MCL) model, which is the most popular and practical model to solve this claim reserving problem.
Mack’s model is both very simple to implement and gives accurate results to IBNR estimation.

One can observe that the entries in each row of the runoff triangleC generally increase along the columns as time
progresses. The chain-ladder method uses this observation to estimate the future payments of claims.

TABLE 1: Runoff triangle of the AFG data

Accident year Developing yearj
i 1 2 3 4 5 6 7 8 9 10

1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
1982 106 4285 5396 10666 13782 15599 15496 16169 16704
1983 3410 8992 13873 16141 18735 22214 22863 23466
1984 5655 11555 15766 21266 23425 26083 27067
1985 1092 9565 15836 22169 25955 26180
1986 1513 6445 11702 12935 15852
1987 557 4020 10946 12314
1988 1351 6947 13112
1989 3133 5395
1990 2063
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The MCL links successive cumulative claims to suitable link ratios. It is a distribution-free stochastic model built
upon the following hypotheses:

• Cumulative claimsci,j of different accident periodi are independent;

• A Markov chain is formed by(ci,j)j≥1. There exist development factorsfj > 0, with 1 ≤ j < n, such that for
all 1 ≤ i ≤ n and for all1 ≤ j ≤ n the following moment conditions hold:

E[ci,j+1|ci,1, ci,2, ..., ci,j ] = E[ci,j+1|ci,j ] = ci,j · fj ,

Var[ci,j+1|ci,1, ci,2, ..., ci,j ] = Var[ci,j+1|ci,j ] = σ2
j · ci,j .

From the runoff triangle data, the MCL predicts the growing factorfj from columnj to columnj + 1 by use of the
following estimator:

f̂j =
∑n−j

i=1 ci,j+1∑n−j
i=1 ci,j

=
n−j∑

i=1

ci,j∑n−j
i=1 ci,j

× ci,j+1

ci,j
.

Note thatf̂j is, in fact, a weighted average of the observed individual development factorsci,j+1/ci,j .
The variance parametersσ2

j , for all j ∈ {1, . . . , n− 2}, are estimated by the following unbiased estimator:

σ̂2
j =

1
n− j − 1

n−j∑

i=1

ci,j

(
ci,j+1

ci,j
− f̂j

)2

. (1)

After computingf̂j , j ∈ {1, ..., n− 1}, the IBNR total reserve can now be computed using the unbiased estimator
given in the sequel:

IBNRMCL =
n∑

i=2

ci,n−i+1 × (f̂n−i+1 · ...× f̂n−1 − 1).

Using the example given in Table 1, Table 2 illustrates how the MCL method predicts the unknown entries of
the runoff triangle (in italic). Table 3 shows the reserve estimation by the use of the MCL method. For each accident
periodi, i ∈ {2, ..., n}, the reserveRi is computed byRi = ĉi,n − ci,n−i−1.

To evaluate the uncertainty of the reserve estimation it is common to use the mean quadratic error (MQE). For the
MCL IBNR estimator, the MQE is:

MQE(ĉi,n) = E[(ĉi,n − ci,n)2|D], where D = {ci,j |i + j ≤ n + 1}

TABLE 2: Reserve estimation using Mack’s chain ladder model on the AFG runoff triangle data.
Accident year Development yearj

i 1 2 3 4 5 6 7 8 9 10
1 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
2 106 4285 5396 10666 13782 15599 15496 16169 1670416857.95
3 3410 8992 13873 16141 18735 22214 22863 2346623863.43 24083.37
4 5655 11555 15766 21266 23425 26083 2706727967.34 28441.01 28703.14
5 1092 9565 15836 22169 25955 2618027277.85 28185.21 28662.57 28926.74
6 1513 6445 11702 2935 1585217649.38 18389.50 19001.20 19323.01 19501.10
7 557 4020 10946 12314 14428.00 16063.92 16737.55 17294.30 17587.21 17749.30
8 1351 6947 13112 16663.88 19524.65 21738.45 22650.05 23403.47 23799.84 24019.19
9 3133 5395 8758.90 11131.59 13042.60 14521.43 15130.38 15633.68 15898.45 16044.98
10 2063 6187.67 10045.83 12767.13 14958.92 16655.04 17353.46 17930.70 18234.38 18402.44

f̂j 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 1.000
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TABLE 3: IBNR reserve estimation using MCL model.

Accident year Future payments Realized payments Reserve estimation
1 — — —
2 16857.95 16704 153.95
3 24083.37 23466 617.37
4 28703.14 27067 1636.14
5 28926.74 26180 2746.74
6 19501.10 15852 3649.10
7 17749.30 12314 5435.30
8 24019.19 13112 10907.19
9 16044.98 5395 10649.98
10 18402.44 2063 16339.44

Total 194288.2 142153 52135.2

In this expression,D represents the set of all known information. Similarly, the MQE for the IBNR reserve of each
accident period̂Ri is:

MQE(R̂i) = E[(R̂i −Ri)2|D] = E[(ĉi,n − ci,n)2|D] = MQE(ĉi,n) (2)

Thus, using the fact thatE[X − a]2 = Var[X] + (E[X]− a)2 and Eq. (2), the MQE of̂Ri can be rewritten as:

MQE(R̂i) = Var[Ri,n|D] + (E[ĉi,n|D]− ci,n)2 (3)

According to Mack [3], the conditional varianceVar[Ri,n|D] is given by

Var[Ri] ≈ ĉ2
i,n

n−1∑

j=n−i+1

σ2
j+1

f̂j+1ĉi,j

Var[R̂i] ≈ ĉ2
i,n

n−1∑

j=n−i+1

σ2
j+1

f̂j+1

∑n−j
q=1 ĉq,j





(4)

Finally, using Eq. (4) and the hypothesis of the model, Mack shows in [3] that the expression for the MQE ofR̂i

is given by

ˆMQE(R̂i) = ĉ2
i,n

n−1∑

j=n−i+1

σ̂2
j

f̂2
j

(
1

ĉi,j
+

1∑n−j
t=1 ct,j

)
(5)

whereĉi,j = ci,n−i+1f̂n−i+1 · · · · · f̂j−1, with j > n− i + 1, corresponds to the estimated value of future payments

ci,n−i+1. The standard error of̂Ri is from now on denoted by se(R̂i) =
√

ˆMQE(R̂i).
From this important result obtained by Mack, it is possible to obtain the MQE for the total IBNR reserve. Unfortu-

nately, the standard error of the total IBNR reserve,R̂Total = R̂2 + · · ·+ R̂n, cannot be obtained directly from the sum
of the standard errors of each accident yeari, 2 ≤ i ≤ n, since they are correlated thanks to the common development
factorsf̂j andσ̂2

j . It can be shown that the MQE of the total IBNR reserve is obtained by the following equation:

ˆMQE(R̂Total) =
n∑

i=2





[se(R̂i)]2 + ĉi,n

(
n∑

k=i+1

ĉk,n

)
n−1∑

j=n+1−i

2σ̂2
j

f̂2
j∑n−j

t=1 ct,j





(6)

Mack’s chain-ladder model can be found in the chain-ladder package [8] for theR platform (a public domain
software for computational statistics and data analysis (for more details see http://www.r-project.org).
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3. KERNEL-BASED METHOD FOR REGRESSION

Kernel-based methods for regression are universal learning machines for solving multidimensional scalar value pre-
diction and estimation problems. These methods received a lot of attention in the machine-learning community since
they are very well grounded on a statistical learning theory, called the Vapnik-Chervonenkis (VC) theory [9]. Its con-
sistency conditions, convergence, generalization abilities, and implementation efficiency have been studied by several
authors during the last four decades (see [9–11]). This section describes the two most used kernel-based methods for
regression: theε-Support Vector Regression (ε-SVR) and the Gaussian Process Regression (GPR).

3.1 The ε-Support Vector Regression Method

Let D be the training set, containingl samplesD = {(x1, y1), (x2, y2), . . . , (xl, yl)}, wherexi ∈ Rd are the input
data andyi ∈ R are the target values. The SVR method first maps the datax ∈ Rd into some a priori chosen Hilbert
spaceF , called the feature space, via a nonlinear functionφ : Rd → F . In this feature space, the prediction function
is formulated by the affine equation:

f(x) = 〈w,φ(x)〉+ b (7)

where〈·, ·〉 denotes the inner product inF , w ∈ F andb ∈ R.
In theε-SVR method, the problem of learning is to find the best function; i.e., the values ofw andb that minimize

the following functional:

R(w, b) =
1
l

l∑

i=1

|yi − f(x)|ε +
1
2
〈w,w〉

where |a|ε =
{

0 if |a| < ε

|a| − ε otherwise.

The solutionf(x) of thisε-SVR problem minimizes the deviation from|f(xi)− yi| for i = 1, . . . , l, while being
as flat as possible. Observe that the deviation is controlled by the loss function| · |ε, calledε-insensitive since it
considers the loss equal to zero when the deviation is less thanε. The flatness is due to the second term of functional
R(w, b), which penalizes the size ofw.

In theε-SVR learning method, the values ofw andb are determined by the following minimization problem:

Minimizew,b
1
2
‖w‖2 + P ·

l∑

i=1

(ξi + ξ̂i)

subject to: ξi, ξ̂i ≥ 0 i = 1, . . . , l

(〈w, φ(xi)〉+ b)− yi ≤ ε + ξi i = 1, . . . , l

yi − (〈w,φ(xi)〉+ b) ≤ ε + ξ̂i i = 1, . . . , l

whereP is a constant parameter that penalizes theε-insensitive errors. The errors occurring iff(xi) is above (respec-
tively, below)yi are represented by theξi (respectively,̂ξi) slack variables.

One can rewrite this optimization problem in its dual form by using Lagrange multipliersαi, α̂i:

Maximizeαi,α̂i

l∑

i=1

(α̂i − αi)yi − ε

l∑

i=1

(α̂i + αi)− 1
2

l∑

i=1

l∑

j=1

(α̂i−αi)(α̂j−αj)〈φ(xi),φ(xj)〉

subject to:
∑l

i=1(α̂i − αi) = 0

0 ≤ αi, α̂i ≤ P

(8)

This is a convex quadratic programming problem; therefore, it has a unique global solution. Letα∗ = (α∗1, α
∗
2, ...,

α∗l ), α̂∗ = (α̂∗1, α̂
∗
2, . . . , α̂

∗
l ) denote the optimal solution of the dual problem.
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The complementary Karush Kuhn-Tucker conditions for this dual problem at the optimal solution are

w −
l∑

i=1

(α̂∗i − α∗i )φ(xi) = 0

α∗i (〈w,φ(xi)〉+ b− yi − ε− ξi) = 0 i = 1, . . . , l

α̂∗i (yi − 〈w, φ(xi)〉 − b− ε− ξ̂i) = 0 i = 1, . . . , l

α̂∗i · α∗i = 0, ξ̂i · ξi = 0 i = 1, . . . , l

(α̂∗i − P )ξ̂i = 0, (α∗i − P )ξi = 0 i = 1, . . . , l

(9)

These complementary condition formulas show several important and suitable properties of theε-SVR learning
method. The first equation means that at the optimal solutionw? for the primal problem is a linear combination of the
input points mapped to the feature space. Since

w? =
l∑

i=1

(α̂?
i − α?

i )φ(xi),

then Eq. (7) can be rewritten as

f(x) =
l∑

i=1

(α̂?
i − α?

i )〈φ(xi),φ(x)〉+ b?. (10)

whereb∗ is chosen so thatf(xi)− yi = −ε for anyi such thatα?
i ∈ (0, P/l).

The other set of equations in Eq. (9) say that whenα?
i andα̂?

i are both equal to zero the scalar function prediction
for the input pointxi distances from the target valueyi less thanε. The input pointsxi in which one of the associated
α?

i or α̂?
i does not vanish are called the support vectors.

This method is available in the kernlab package [12] for theRplatform. A more detailed presentation aboutε-SVR
can be found in [13].

3.2 Kernel Functions

The a priori chosen non-linear functionφ, mapping the input point to the feature space, appears in two places: one
is as the objective function of theε-SVR dual optimization problem (8) as〈φ(xi), φ(xj)〉, and the other is as the
prediction functionf in Eq. (10) as〈φ(xi),φ(x)〉. Notice that in both cases it is sufficient to know how to compute
the inner-product of two points mapped to feature space byφ. Thus, a suitable and efficient way to do that is through
the use of the so-called kernel functions.

Kernel functions have been recognized as important tools in several numerical analysis applications, including
approximation, interpolation, meshless method for solving differential equations, and in machine learning [14].

A kernel functionk : Rd × Rd → R is defined as follows:

k(z,w) = 〈φ(z),φ(w)〉.
Using this definition, the prediction function in Eq. (10) is better written as

f(x) =
l∑

i=1

(α̂?
i − α?

i )k(xi,x) + b?. (11)

In fact, kernel functions implicitly represent the mappingφ to the feature spaceF . For example, consider thatz
andw are inR2. Also, consider the non-linear mappingφ : R2 → R3 asφ(z) = (z2

1 , z2
2 ,
√

2z1z2). Then,

〈φ(z), φ(w)〉 = z2
1w2

1 + z2
2w2

2 + 2z1z2w1w2 = (〈z,w〉)2.
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In conclusion, it is more efficient and more suitable to choose kernels rather than non-linear mappingsφ. However,
not all functionsk represent an inner product in the feature space. Mercer’s theorem characterizes these functions [9].
Some examples of kernel functions that satisfy Mercer’s conditions are:

• Polynomial kernel [15]:k(z,w) = (1 + 〈z,w〉)d.

• Gaussian kernel [15]:k(z,w) = e−(‖z−w‖2/2σ2).

• Wavelet kernel [16]:k(z,w) =
n∏

i=1

h

(
zi − wi

σ

)
, whereh(u) = cos(1.75u)e−(u2/2).

• Fourier kernel [17]:k(z,w) =
n∏

i=1

g

(
zi − wi

σ

)
, whereg(u) =

1− q2

2[1− 2q cos(u)] + q2
.

3.3 The Gaussian Process Regression Method

The GPR is another supervised statistical learning method for regression. Similar to theε-SVR, it considers as an
input the training data setD = {(xi, yi)}i=1,...,l, wherexi ∈ Rd andyi ∈ R. Its objective also is to build a function
g : Rn → R that approximates the input data. Under Gaussian process assumptions (see [10] for further details) the
predictive mean value at a pointx? is given by

g(x?) = kT (x?)(K + σ2I)−1y

whereK denotes thed × d matrix of covariances between the training points with entrieskij = k(xi,xj); k(x?) is
the vector of covariances such that theith entry isk(xi,x?), wherek is a kernel function;σ2 is the noise variance on
the observations; andy is thel-dimensional vector containing the training targets. Moreover, the predictive variance
value at a pointx? is given by

Var[g(x?)] = k(x?,x?)− vT v,

wherev is the solution of the systemLv = k(x?), andL is the Cholesky decomposition of(K + σ2I).
This method is also implemented in thekernlab package forR [12].

4. A HYBRID CHAIN-LADDER MODEL

In this section we present a hybrid model composed of a Mack’s chain-ladder component and a kernel-based method
component, to model, respectively, linear and nonlinear patterns contained in the runoff triangle. It might be the case
that the behavior of the IBNR claims data is not best captured by a linear estimator such as Mack’s chain-ladder
model. So, a hybrid strategy that combines both linear and nonlinear structures present in the runoff triangle may be
shown to be a good alternative.

Our model strategy acknowledges the fact that each known entryci,j+1 generally does not correspond to the value
of ci,j · f̂j . The difference between these two values is what we call the residual atci,j+1.

The hybrid IBNR total reserve modelIBNRhybrid can be represented as follows:

IBNRhybrid = IBNRMCL + IBNRKBM,

whereIBNRMCL is the reserve estimated by the linear Mack’s chain-ladder model whileIBNRKBM is the reserve
obtained by fitting the nonlinear statistical learning process. Both estimates are obtained by use of the runoff triangle
data: Mack’s on the original triangle data whileIBNRKBM is obtained by fitting the statistical learning process to
the residuals of Mack’s model.

The unknown entriesci,j of the runoff triangleC are then obtained by

ˆ̂ci,j = ĉi,j + ψ̂i,j ,
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whereĉi,j is the prediction by the Mack’s chain ladder andψ̂i,j is the residue learned by the kernel-based regression.
Next, we propose three different strategies to build the training data for the kernel-based regression method. These

strategies differ on how the setD will be constructed, to be more specific, on how to build thel × n matrixX whose
ith row corresponds to the transpose of an input vectorxi, and the vectory whoseith entry corresponds to the target
valueyi. Each of these three strategies will define a new hybrid model. As we will see, the first model behaves as a
multiplicative nonlinear correction to Mack’s linear model, while the last two represent additive nonlinear corrections.

4.1 Hybrid Model 1

This first model uses kernel-based methods for regression to build an approximation function that models the residuals
through the functionΨ1 : R2 → R. In this model, the hybrid method tries to correct the estimation forci,j+1 by
learning the ratiofi,j/f̂j , wherefi,j = ci,j+1/ci,j .

Here, theith row of thel × 2 matrix X corresponds to the transposed bi-dimensional vectorxT = (fi−1,j/f̂j ,
fi,j−1/f̂j−1), and each entry of the targetl-dimensional vectory is defined byy = fi,j/f̂j−1, where2 ≤ i ≤ n−2,
2 ≤ j ≤ n − i andn × n is the dimension of the runoff triangle. Since the training set should be constructed using
only the known part of the triangle, it follows that the sizel of the training set depends onn and for this strategy it
corresponds to

l =
n−2∑

i=2

n−i∑

j=2

1 =
n−2∑

i=2

n− i− 1 =
(n− 2)(n− 3)

2
=

n2 − 5n + 6
2

. (12)

In fact, this choice for the training data tries to capture a nonlinear multiplicative correction for the estimated de-
velopment factor̂fj on each unknown entry of the runoff triangle, since the value of the unknown entryci,j will be
estimated bŷ̂ci,j+1 = ĉi,j + Ψ1(fi−1,j/f̂j , fi,j−1/f̂j−1) · ĉi,j · f̂j .

To illustrate the construction for this and the coming models, consider a small runoff triangleA given by

A =

∣∣∣∣∣∣∣∣∣∣

5012 8269 10907 11805 13539
106 4285 5396 10666
3410 8992 13873
5655 11555
1092

∣∣∣∣∣∣∣∣∣∣

. (13)

Sincen = 5, it follows thatl is equal to3. Mack’s estimators for the growing factor arêf1 = 2, 33, f̂2 = 1, 40, and
f̂3 = 1, 37; and from the triangle one can compute the valuesf1,2 = 1, 32, f2,1 = 40, 42, f1,3 = 1, 08, f2,2 = 1, 26,
f3,1 = 2, 64, f2,3 = 1, 98, andf3,2 = 1, 54. Therefore, the matrixX and the vectory are given by

X =




f1,2

f̂2

f2,1

f̂1

f1,3

f̂3

f2,2

f̂2

f2,2

f̂2

f3,1

f̂1




=




0, 94 17, 35
0, 79 0, 90
0, 90 1, 13


 andy =




f2,2

f̂2

− 1

f2,3

f̂3

− 1

f3,2

f̂2

− 1




=




0.90− 1
1, 45− 1
1, 10− 1


 .

4.2 Hybrid Model 2

This second model uses kernel-based methods for regression to build an approximation function that models the
residuals obtained from fitting Mack’s model to the original runoff triangle. This function is defined byΨ2 : R3 → R.
To build this approximation this new model has to fill the training matrixXl×3 and the target vectory3×1 according
to the following strategy:

• Each row ofX is the transpose of a three-dimensional vectorxT = (ci−1,j , ci−1,j+1, ci,j), for 2 ≤ i ≤ n − 1
and1 ≤ j ≤ n− i− 1.
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• Each entry ofy corresponds toy = ci,j+1 − f̂j ∗ ci,j , for 1 ≤ i ≤ n− 2 and1 ≤ j ≤ n− i− 1.

Considering this, the number of training elements onD is given by

l =
n−1∑

i=2

n−i−1∑

j=1

1 =
n−2∑

i=1

(n− i− 1) =
(n− 2)(n− 1)

2
=

n2 − 3n + 2
2

. (14)

Notice that this model, by using three neighbors ofci,j+1, tries to capture the nonlinearity not only between the
columns but also between the lines. Therefore, it is an additive correction to the developing factor estimatorf̂j .

For the runoff triangleA, the matrixX and the vectory correspond to

X =




A1,1 A1,2 A2,1

A1,2 A1,3 A2,2

A1,3 A1,4 A2,3

A2,1 A2,2 A3,1

A2,2 A2,3 A3,2

A3,1 A3,2 A4,1




=




5012 8269 106
8269 10907 4285
10907 11805 5396
106 4285 3410
4285 5396 8992
3410 8992 5655




andy =




ψ̂1,1

ψ̂1,2

ψ̂1,3

ψ̂2,1

ψ̂2,2

ψ̂3,1




=




4038, 02
−603, 00
3273, 48
1046, 70
984, 20
−1621, 15




.

4.3 Hybrid Model 3

This final model is very similar to the previous Model 2, and uses kernel-based methods for regression to build an
approximation function that models the residuals through the functionΨ3 : R4 → R. To buildΨ3 it fills the training
matrixXl×4 and the target vectory according to the following strategy:

• Each row ofX is the transpose of a four-dimensional vectorx = (ci,j , ci,j+1, ci+1,j , f̂j), for 1 ≤ i ≤ n − 2
and1 ≤ j ≤ n− i− 1.

• Each entry ofy corresponds toy = ci,j+1 − f̂j ∗ ci,j , for 2 ≤ i ≤ n− 1 and1 ≤ j ≤ n− i− 1

The number of training elements ofD for this model also is given by Eq. (14).
It chooses three elements aroundci,j+1 and the factor̂fj in order to capture data nonlinearity, not only between

columns but also between lines. It is also an additive correction strategy forf̂j .
For the runoff triangleA, the matrixX and the vectory correspond to

X =




A1,1 A1,2 A2,1 f̂1

A1,2 A1,3 A2,2 f̂2

A1,3 A1,4 A2,3 f̂3

A2,1 A2,2 A3,1 f̂1

A2,2 A2,3 A3,2 f̂2

A3,1 A3,2 A4,1 f̂1




=




5012 8269 106 2, 33
8269 10907 4285 1, 40
10907 11805 5396 1, 37
106 4285 3410 2, 33
4285 5396 8992 1, 40
3410 8992 5655 2, 33




andy =




ψ̂1,1

ψ̂1,2

ψ̂1,3

ψ̂2,1

ψ̂2,2

ψ̂3,1




=




4038, 02
−603, 00
3273, 48
1046, 70
984, 20
−1621, 15




.

4.4 The Learning Process

After building the training setD, the next step in the proposed methodology for IBNR estimation is to obtain the
modeling functionΨ1, Ψ2, or Ψ3. It is done by the use of the kernel-based methods for regression described in
Section 3. From these three functions, the nonlinear part of the hybrid IBNR reserve estimator will be given by

IBNRKBM =
n∑

i=2

n∑

j=n−i+1

ψ̂i,j , (15)

where the value of̂ψi,j+1 is calculated for each model as follows:
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Hybrid Model 1: ψ̂i,j+1 = Ψ1(fi−1,j/f̂j , fi,j−1/f̂j−1) · f̂j · ĉi,j .

Hybrid Model 2: ψ̂i,j+1 = Ψ2(ĉi,j , ĉi,j+1, ĉi+1,j).

Hybrid Model 3: ψ̂i,j+1 = Ψ3(ĉi,j , ĉi,j+1, ĉi+1,j , f̂j).

5. RESULTS

This section compares the results of fitting the three proposed hybrid models to Mack’s chain-ladder model using
some empirical data. It starts by considering the runoff triangle of the automatic factultative business in general
liability (RAA) data set illustrated in Table 1 and also the ABC data set in Table 4, which presents a runoff triangle
of a worker’s compensation portfolio of a large company (both are available in the ChainLadder package). Tables 5–7
show the results for the three hybrid models using theε-SVR and GPR methods to learn the nonlinear part of the
IBNR total reserve and compare them to Mack’s chain-ladder estimate.

One can notice that all proposed hybrid models produce similar results when compared to the MCL benchmark
model for IBNR reserve estimation. In particular, in all data and specifications, they make corrections that result in

TABLE 4: Runoff triangle of the ABC data
Accident year Developing yearj

i 1 2 3 4 5 6 7 8 9 10 11
1977 153638 342050 476584 564040 624388 666792 698030 719282 735904 762544 762544
1978 178536 404948 563842 668528 739976 787966 823542 848360 871022 889022
1979 210172 469340 657728 780802 864182 920268 958764 992532 1019932
1980 211448 464930 648300 779340 858334 918566 964134 1002134
1981 219810 486114 680764 800862 888444 951194 1002194
1982 205654 458400 635906 765428 862214 944614
1983 197716 453124 647772 790100 895700
1984 239784 569026 833828 1024228
1985 326304 798048 1173448
1986 420778 1011178
1987 496200

TABLE 5: IBNR total estimation using the Hybrid Model 1

IBNR total estimation using the Hybrid Model 1
GPR ε-SVR MCL

RAA 53615,38 53615,50 52135,23
ABC 5435057,00 5435057,00 5277760,36

TABLE 6: IBNR total estimation using the Hybrid Model 2

IBNR total estimation using the Hybrid Model 2
GPR ε-SVR MCL

RAA 53693,25 53891,09 52135,23
ABC 5493195,00 5505984,00 5277760,36

TABLE 7: IBNR total estimation using Hybrid Model 3

IBNR total estimation using Hybrid Model 1
GPR ε-SVR MCL

RAA 53815,45 52927,86 52135,23
ABC 5435057,00 5435057,00 5277760,36
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a total IBNR reserve estimate higher than the one predicted by the MCL model. Since the observed IBNRs for these
two triangles are not available, it is not possible to judge which one produces the best estimate.

Finally, as a final exercise in comparing the three proposed models to the MCL model, we will use a runoff
triangle obtained from an insurance company in Brazil. This triangle has 48 lines, and in order to save some data to
allow for out-of-sample comparisons, only the first 24 lines of this triangle will be used for model fitting. To improve
comparisons among the different models these will be fitted to different sizes of the runoff triangle, and the observed
loss values will be represented by the label “Loss,” which corresponds to the the sum of the last column of then× n
runoff triangle minus the first element of the column. In Table 8 the three hybrid models and the MCL model are
run using then first columns of the runoff triangle, withn varying from 8 to 24. Notice that MCL gives the best
approximation only in six out of the 17 runoff triangles and that in the majority of the cases the results ofε-SVR or
GPR are very similar.

Since these three hybrid models are very easy to implement and have low computational complexity, they may be
adopted by practitioners in the insurance industry as a complement to Mack’s chain-ladder model.

For all results presented above, theε-SVR and the GPR methods of the kernlab package were run using automatic
parameter selection. In both cases, the kernel adopted was the Gaussian and the input data were normalized with the
corresponding procedure.

6. BOOTSTRAPPING

Since it is very difficult to obtain a closed formula for the variance of each of the IBNR hybrid model estimators,
we have chosen to use the boostrap method to obtain a numerical approximation of these variances. To implement
this procedure several scenarios for the runoff triangle were generated by simulation according to the following
steps:

1. The initial incremental triangleI is obtained from the cumulative runoff triangleC according to the following
rule: I i,j = ci,j+1 − ci,j , for 1 ≤ i ≤ n and1 ≤ j ≤ n− i + 1.

TABLE 8: Results for the Hybrid Models 1, 2, and 3, using GPR andε-SVR, and MCL model. The
estimated values in bold are those closest to the observed loss (true) values

hybrid 1 hybrid 2 hybrid 3
n GPR SVR GPR SVR GPR SVR MCL Loss
8 3252.29 3252.29 3484.07 3406.03 3496.95 3437.64 2929.94 2198.06
9 3121.79 3121.83 3225.91 3194.21 3236.97 3219.19 2992.19 2403.74
10 3036.09 3036.10 3165.02 3097.86 3155.12 3168.56 2765.33 2702.46
11 2079.09 2079.11 2107.38 2091.94 2119.86 2102.65 2035.77 3033.43
12 2388.14 2388.09 2312.32 2269.15 2311.39 2300.87 2371.65 3026.79
13 2786.47 2786.45 2879.77 2892.97 2871.61 2856.53 2554.99 3433.79
14 3217.77 3217.75 3199.19 3113.77 3144.23 3143.39 3084.32 2858.02
15 3341.42 3341.40 3364.38 3383.72 3348.54 3535.35 3271.88 2854.45
16 3408.84 3408.82 3511.09 3556.08 3231.53 3556.08 3214.53 3095.06
17 3241.46 3241.48 3227.45 3220.05 3227.45 3186.67 3191.01 3332.77
18 3215.45 3215.46 3201.01 3167.12 3212.84 3179.60 3126.63 3622.55
19 3537.56 3537.52 3547.58 3951.65 3550.36 3507.41 3512.36 4239.08
20 4003.22 4003.25 3979.25 4003.25 3989.96 3968.46 3931.84 4252.08
21 4137.46 4137.48 4133.45 4137.16 4144.92 4109.03 4020.38 4637.02
22 4771.62 4771.63 4693.65 4690.57 4694.25 4671.22 4740.65 4506.90
23 4035.20 4035.24 3994.76 4051.30 4006.66 4018.47 4012.00 4446.52
24 3714.77 3714.78 3642.43 3684.85 3668.85 3677.19 3591.91 4626.28
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2. A bootstrap sample of the incremental triangleI is obtained by resampling with replacement the entries in each
column, given the origin to a new cumulative runoff triangle. We assume that in each column the individual
increments are independent from each other.

3. From all resampled incremental trianglesI , a new cumulative triangleC is computed, and then a new estimative
for the total IBNR reserve is computed.

This procedure is repeated several times. By doing, so it is possible to measure the accuracy of the hybrid model
estimates and compare them to the MCL model, since it is now possible to numerically evaluate the MQE associated
with the hybrid models. Table 9 shows the standard deviation estimation for the total IBNR reserve after simulating
999 runoff triangles on the24 × 24 real data via bootstrapping. In Table 9 the three hybrid models are run with the
GPR learning strategy using automatic choice for the parameters and normalized input data. In all cases the hybrid
models gave better results when compared to the MCL model.

TABLE 9: Standard deviation estimate using bootstrapping

n Hybrid 1 Hybrid 2 Hybrid 3 MCL
8 256.87 260.01 266.25 570.83
9 239.46 242.08 225.56 579.30
10 208.87 209.23 209.86 495.36
11 177.38 178.94 171.67 377.11
12 164.21 157.31 157.99 431.72
13 165.54 166.81 167.67 423.05
14 194.19 188.52 198.23 475.36
15 198.19 201.82 201.65 540.45
16 204.54 213.59 209.88 496.23
17 180.99 195.70 198.77 473.37
18 197.77 204.04 398.42 430.05
19 200.27 212.57 199.48 513.19
20 225.46 227.76 227.35 555.77
21 216.86 230.62 220.72 564.40
22 263.24 250.58 261.15 637.92
23 217.51 240.26 228.73 475.21
24 215.89 227.04 226.64 428.68

7. CONCLUSION

This work proposed a two-stage hybrid method for IBNR reserve estimation. In the first stage, the method uses Mack’s
chain-ladder model to obtain a reserve prediction, and in the second stage it uses kernel-based regression methods to
statistically learn form the residuals obtained by fitting of Mack’s model. Statistical learning from these residuals is
accomplished by use of three different strategies combining the known entries of the runoff triangle. The method is
very simple to implement and shows promising results based on the empirical exercises presented in this article. The
authors plan to carry out further studies in order to obtain a theoretical expression for the IBNR variance estimator for
the hybrid models.
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