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White noise is a very common way to account for randomness in the inputs to partial differential equations, especially
in cases where little is know about those inputs. On the other hand, pink noise, or more generally, colored noise having
a power spectrum that decays as 1/ f*, where f denotes the frequency and o« € (0, 2] has been found to accurately
model many natural, social, economic, and other phenomena. Our goal in this paper is to study, in the context of simple
linear and nonlinear two-point boundary-value problems, the effects of modeling random inputsas 1/ f* random fields,
including the white noise (x = 0), pink noise (x = 1), and brown noise (x = 2) cases. We show how such random
fields can be approximated so that they can be used in computer simulations. We then show that the solutions of the
differential equations exhibit a strong dependence on «, indicating that further examination of how randomness in
partial differential equations is modeled and simulated is warranted.
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1. INTRODUCTION

Given a subseD € R? and/or an interval € R, a random field is a function of position and/or time whose value

at any pointr € D and/or at any time < Z is randomly selected according to an underlying probability density
function (PDF), most often a Gaussian PDF. Héenotes the spatial dimension. Thus a random field is expressed
asn(z, t; w) to indicate that the value of not only depends on position and time, but also probabilistically on the
associated PDIp(w). Random fields come in two guises: uncorrelated and correlated, the former type commonly
referred to as white noise, the latter as colored noise. Note that choosing the Gaussian PDF allows for a nonzero
probability that the noise may, locally and momentarily, have an arbitrarily large modulus. Other choices for the
PDF may be made, for example, a truncated Gaussian that excludes rare but large modulus samples or a simple
uniform density over a finite interval. Also note that, for the most part, our discussion is made within the context
of spatially dependent random fields, although it holds equally well for fields that instead, or in addition, depend on
time.

A key concept used in this paper is that of the power spectrum or, synonymously, the energy spectral density as-
sociated with realizations of random fields. The power spectrum is a positive, real-valued function of the frgquency
that gives the power, or energy density, carried by the field per unit frequency. Thus, the integral of the power density
between two values of the frequency provide the amount of energy in the field corresponding to those frequencies.
Mathematically speaking, the energy spectral density is the square of the magnitude of the continuous Fourier trans-
form of the field.

The value of a white noise random field at any point is independent and uncorrelated from the values of that field
at any other point. A white noise random field has a flat power spectrum, so that the energy of the field between
the frequency values andb depends only o — a; thus, for example, there is just as much energy between the
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frequencies 1,000,100 and 1,000,200 as there is between the frequencies 100 and 200. It is obvious, then, that a white
noise random field has infinite energy.

On the other hand, the value of a colored noise random field at any point may be independent but is correlated
to the values of that field at other points; this explains, of course, why colored noise is also referred to as correlated
noise. A particular class of colored noise fields has a power spectrum that deddy$ awherex > 0 and f denotes
the frequency. White noise correspondsxte-= 0, brown noise tax = 2, anda = 1 corresponds to pink noise. Pink
noise has the property that the energy in the frequency interval depends only oh/a so that the energy between
frequencies 10 and 20 is the same as that between frequencies 1,000,000 and 2,000,0000. Musically speaking, this
means that all octaves have the same energyxFér1, the energy i / f* noise grows ag'~* so that it has infinite
energy fora < 1 and finite energy fotx > 1; thus, white noise, that is, the cage= 0, has infinite energy. For pink
noise, that is, forx = 1, the energy grows dsa f so that it is also infinite. Figure 1 provides approximate realizations,
determined using Algorithm 2 introduced in Section 2.2, of zero expectafipfi noise fora = 0, 0.5, 1, 1.5, and 2
sampled at 1001 equally spaced points on the intgfval; for the three largest values af we plot two realizations.

In practice, individual realizations are of no interest; rather, statistical information determined over many realizations
is relevant. However, it is instructive to examine, as we do here, the effect that the choideasfon realizations.
Clearly, the random fields illustrated in Fig. 1 are very different, so that if one changes the input of a system from one
of the fields to another, one can expect a large difference in the output of the system as well.

As « increases, the realizations of the noise become “smoother,” illustrating the increasing correlation in the
random field asx increases (see Fig. 1). The spatial average of the realizations also provides an inkling about the
effect that increasing correlation can have on realizations. All fields illustrated in Fig. 1 are sampled from a standard
Gaussian PDF, that is, the samples have zero expectation and unit variance. This implies, among many other things,
that the expectation of the spatial average of the all five random fields vanishes. Of course, the spatial average of
individual realizations do not, in general, vanish. In the white noise case, the sample at each point is uncorrelated from

N
o
o

150

=
a1

77(0 5,1000) (23 w)
n(l,lOOO)(%w)

~— 100 4

=
o

50

7(©0:1000) (-

I |
B |

ul o a1
S o© o

o
o
wn
=
o
o
wn
=
o
o
wu
=

w
N

N

[

0.5

,,7(2I,1000) (2

77(1'5’1000)(55§ w)

|
=
o

0.5 1
X

FIG. 1: Realizations of discretizetl/ f* random fields with respect to a uniform grid having 1001 equally spaced
points. Top row, left to rightx = 0 (white noise)x = 0.5, andx = 1 (pink noise). Bottom row, left to rightx = 1.5
andx = 2 (brown noise).

o

International Journal for Uncertainty Quantification



Pink Noise,1/f* Noise, and Their Effect on Solutions of Differential Equations 259

the samples taken at other points, which results in a balance between the positive and negative samples so that the
spatial average of individual realizations do tend to remain close to zero. As one increases the «watbhatdfalance

can be increasingly upset so that the spatial average of an individual realization can be very different from zero. This
is clearly seen in Fig. 1, where, in the brown noise case, for example, the spatial average is decidedly not zero.

1/ noise is probably referred to as white noise because it contains all frequencies, much the same as white light
contains all colors. Of course, the light spectrum is finite whereas the white noise spectrum, by definition, contains all
frequencies equally./ f? noise is called brown not because of any association with color, but because it corresponds
to Brownian noise. A reason, but not the only one, suggested for referringftonoise as pink noise is that brown
noise is sometimes referred to as red noise and pink is “halfway” between white and red. Pink noise is also referred
to as flicker noise because the noisy fluctuations, that is, the flicker, observed in signals from electronic devices is
observed as havingld f power spectrum; flicker noise associated with vacuum tubes was studied some time ago, for
example, [1-3].

White noise random fields are the most common, indeed, practically ubiquitous, model used in probabilistic meth-
ods for accounting for randomness in the inputs of systems governed by differential equations, especially for cases
in which not much is known about the precise nature of the noise. This is not the case in many other settings, where
instead pink noise, or more generally,f* noise, is the model of choice. Pink noise and othé&f* noise signals
with « £ 0 or 2 have been observed in statistical analyses in astronomy, musical melodies, electronic devices, graphic
equalizers, financial systems, DNA sequences, brain signals, heartbeat rhythms, psychological mental states, human
auditory cognition, and natural images, just to name a few instances. Even fractals are intimately relafetbiee
[4-6]; in fact, Mandelbrot’s observation of the f power spectrum of rainfall at different locations led to the devel-
opment of the much more general fractal modeling of natural phenomena. See the website [7] for a very extensive
bibliography for pink noise going back to the 1910s and the web articles [8, 9] for a discussion of the history, proper-
ties, and applications df/ f * noise; see also the magazine article [10]. An especially illuminating treatmep &f
noise is given in [11]. The following quote from that paper is particularly telling (emphasis added here): “Scale invari-
ance refers to the independence of the model from the scale of observation. The fagithaises (and Brownian
motion) are scale invariant is suggested by their autospectral densities. If the frequency scale is changed, the original
amplitude scaling can be obtained by simply multiplying by an appropriate constant. It was Mandelbrot's observation
of the universality of scale invariance that led to this elevation as a fundamental prapéatt, it can be argued that
it is this property that is universal and accounts for the proliferation of power law noises throughout nature.

Given that very often in actual measurements of fluctuations of signals in engineering, physical, chemical, biologi-
cal, financial, medical, social, environmental, etc. systems, pink noise and not white noise is what is actually observed
(it has even been suggested thaf noise is ubiquitous; see, for example, [12]) but on the other hand, in mathematical
models of those systems the fluctuations are most often modeled as white noise, it is interesting to ask, Does it make
any difference to the outputs of a system what type of noise one uses in the inputs to the system? The goal of this
paper is to use the setting of a simple two-point boundary-value problem for ordinary differential equations to address
this question, that is, to examine, in that simple setting, the differences in the statistical properties of solutions of
differential equations having/ f* random inputs for different values of

A random vector is a random field defined over a set of discrete points in space and/or time. Random vectors are
of general interest, although for us, the interest is mostly their use in defining approximations to random fields defined
over intervals. The power spectrum of a random vector is again a function of frequency determined by the square of
the coefficients in the discrete Fourier transform of the vector.

Random fields can be defined by providing their expected value and covariance. For example, for a one-dimensional
random fieldn(z; w) in one spatial dimension, the mean and covariance are defined by

o) =Efn(eiw)] = [ nwlp)de  and  Cova,a') = Ef ilaw) - uie)] Ina's ) — u(a)] .

as well as, of course, the PQ)fw); hereI” denotes the interval iR over whichp(w) is defined, e.g., for a Gaussian
PDF, we havd™ = (—o0, c0). Computing approximations to correlated random fields is relatively straightforward if
one knows the expected value and covariance of the field. For example, a popular means for doing so is to determine
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the (truncated) Karhunen-kewe expansion of the field [13, 14], something that can be accomplished by solving for
the eigenvalues and eigenfunctions of the (discretized approximate) covariance function.

The covariances of white noise and brown noise (the expected value is usually assumed to be zero) are known;
they are proportional t6(x — z’) and min(z, z'), respectively, for random fields in one dimension. We can use
the Karhunen-Leve expansion to determine approximate realizations of brown noise. Unfortunately, the covariance
for 1/ f* noise forx other than 0 or 2 is not directly defined; all one has to work with is knowledge about the power
spectrum. White noise can be approximated using a sampling method over a discrete set of points. This is also possible
for brown noise as well [see Eq. (13) and (16)]. In this paper we show how a similar method can be developed for
generall / f* noise.

2. GENERATING REALIZATIONS OF 1/f* RANDOM VECTORS AND FIELDS

In this section we study how to generate computable realizationg /5f random vectors and of approximations to
1/f* random fields.

2.1 Generating Realizations of 1/f* Random Vectors

We consider the algorithm of [11] for generating discretg¢® noise, that is, for generating/ f* random vectors.
Before we present that algorithm, we provide some motivation. We will use this algorithm as the basis for our approach
toward approximating / f* random fields.
Let w(z; w) denote a white noise random field. We define the randomdjeldw) as the convolution of(x; w)
with an impulse response functiénz), that is,

(e w) = / " bz — ywly: w)dy.

If () (z) = 5(x), whered(x) denotes the Dirac delta function, the correspondif¥)(z; w) = w(y; w), that is, we
recover white noise. If instead,
if 2 >
h(Q)(l‘):{l if x>0

0 if © <0,

we obtainé () (z; w) as a brown random field.

We proceed in a similar manner for infinite random vectors,étv), i = 0, ..., co denote the components of an
infinite causal white noise vectaf(w), that is, the value of each; (w) is sampled from a given PDF independently
and uncorrelated from the value of any other componenf@b); we setw;(w) = 0 for i < 0. We define the
components of the infinite causal random vediap) through discrete convolution af(w) with an infinite response
vectorh, that is,

Ei(w) =Y higwi(w)  fori=0,...,00. 1)
k=0
If
o_5 _ )1 ifi=0
hi =0 = { 0 otherwise, (2)

the corresponding random vectf) (w) = @(w), that is, we recover the white random vector. If instead

@ |1 fori >0
hi” = { 0 fori <0, (3)

we obtainé® (w) as a brown random vector.
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We want to “interpolate” betweeh(®) and%(2) to obtaink(®) so thaté(®) (w) is al/f* random vector. In order

to obtain the correct power spectrum, we do the interpolation by first taking the Z transform [i%) ahd/(® to
obtain

H9(z) =1 and H®(z)= - _12_1. (4)

We then generalize to arbitraty € (0, 2) by setting
H®™(z) = ! 5
(2) = m (5)

Justification of this choice for the generalization of (2) and (3) is provided by demonstrating that it does indeed induce
a random vector having B/ f* power spectrum as is demonstrated in Section 2.1.1. Taking the inverse Z transform

of (5), we obtain the vectol,. To this end we represeit(®) (z) as the power series

H®(z) =3 H® .,
§=0
where
. ) — 1
Hé"‘) =1 and H](.“) = Hj(.i‘)lm% fori=1,2,.... (6)

Then, the inverse Z transform &f(*)(z) is given by the vectoh(®) having components

0o
hgoc) :ZHJ(‘(X)&L—]' forj:O,...,oo
=0

Substitutinghg“) into the discrete convolution (1), we obtain the infinite colored noise vé}ﬁf’é(w) having com-
ponents

Eg“)(w):ii}(§“)6i_k_jwk ZH(“ 257 ke jwi(w ZH(“ wi_j(w) for i =0,...,00, (7)

k=05=0

wherew; (w) are the components of an infinite white noise vector and the Wefgﬁ%are determined by (6). Recall
that we have seb; (w) = 0 for i < 0, so that (7) reduces to

£ (@) = Y HP (@) for i=0,...0c, ©

=0

A finite-dimensional colored nois&/ vector &%) (w) € RM is defined by selecting from (8) the firat/
components of the infinite noise vectd®™ (w) so that

£ (@ ZH("‘)w”w for i=0,...,M—1. )

In matrix form (9) is given by
é’(oc,M)(w) — H(® IU(“’JW)(CU)
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wherew(*M) (w) is anM-dimensional white noise vector aifflis the M x M unit lower triangular Toeplitz matrix
given by

7Y 1 0 .. 0
H(® 7 S /(A W\ PP
g, H7HY, .. o H® 1

Note that for white noiseH(®) = I, the identity matrix, and for brown noise, all the entries on or below the main
diagonal ofH(®) are equal to one. Fdr < « < 2 the subdiagonal entries #1(*) are all nonzero but monotonically
decrease as one moves away from the main diagonal, th]atj»s,Hf"‘) > Hé"‘) > > HJ(\}XZ1 > 0for0 <

« < 2. The rate of decrease acceleratesc@ecreases, which is an indication of the reduction in the correlation as
decreases.

The finite-dimensional colored noise vectf-*) (w) can be used to determine approximations of * ran-
dom fieldn(z; w) (see Section 2.2).

We summarize the above discussion in the following algorithm that produces a realization of the disffete
noise vectog(*) ¢ RM, Because discrete convolution has complegity)/2), in the implementation of the above
process we use, instead of the discrete convolution, the fast Fourier transform that has complekity lof; M/).

The implementation in [11] uses the real Fourier transform procedure given in [16]; we instead use the MATLAB
complex fft() function.

Algorithm 1.
Given a positive integeM, « € (0,2], and the standard deviatian of the zero-mean distribution from which
the components;, i = 0,..., M — 1 of a white noise vectors € RM are sampled. Then, the componeats

j=0,...,M —1ofadiscretized / f* random vectoE, € RM are determined as follows:

e Determine the weight vectdi ¢ R2M having components

1 for 7=0
050+ j—1
H={ H 2270 o =1 M1
j
0 for 7> M.

e Generate the vectar € R*M whose components;, j = 0,..., M — 1 are independently sampled from a
Gaussian distribution with zero mean and standard deviatind for whichw; = 0 for j > M.

e Using the fast Fourier transform algorithm, determine the discrete Fourier transfbrmg2! andw € C2M
of H andw, respectively.

e Set the components of the vec;%jre C?M to the indexwise produq@- = ﬁj@j forj=0,...,2M — 1.
o Scalefy = 1 foandfy = L fa and setf; = 0forj > M.
e Determine the vectof € C?M as the inverse Fourier transformﬁf
e Then the components of the discretizZef* random vectok, ¢ R are given by
& =2R(f;) for j=0,....,M—1,

where thelR(-) denotes the real part.
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Note that Algorithm 1 produces Gaussian random vectors but that it can easily be changed so that it produces random
vectors for other PDFs.

In the Appendix we provide the code for the MATLAB implementation of Algorithm 1. Variations of the code
using uniform or truncated Gaussian distributions can be obtained at [17]. An implementation in C can be obtained at
[18].

2.1.1 Verification of Algorithm for Generating Realizations of 1/ f* Random Vectors

We now verify that Algorithm 1 does indeed produce random vectors with the ddsif@dpower spectrum, thus
computationally justifying the generalization (5) of (4). We consider random vectors of\gize 1000 for five

values ofa, namely,x = 0, 0.5, 1, 1.5, and 2. For eachwe sample 10,000 realizations of the veckbf1000)
determined by Algorithm 1. We determine the discrete Fourier transform of every realization of the noise vector and
then compute the expected values of the squares of the real and imaginary parts of the (complex-valued) Fourier
coefficientsﬁfc“’looo) corresponding to the wave numbefwhich is, of course, the Fourier index and is proportional

to the frequency.) These are plotted in Fig. 2, which, because the square of the Fourier coefficients are proportional to
the energy density, is essentially a plot of the power spectrum. Note that the plots extend over only the wave numbers
1-500, because for real vectors sucti.&s!°%%) | the Fourier coefficients occur in complex conjugate pairs. We also
determine the power spectrum through a linear polynomial Ieast-squarei;?]‘,g’f‘'&900)|2 as a function of the wave
numberk, that is, the sum of the squares of the real and imaginary parts of the Fourier coefficients plotted in Fig. 2.
The slopes of the linear polynomial fits are given in Table 1. We include only the wave numbers from 1 to 400 in
the least-squares fit because the accuracy of the Fourier coefficients deteriorates as the wave number increases. We
observe that the power spectrum does indeed have the proper dependence on the wave number.

2.2 Generating Realizations of Approximate  1/f* Random Fields

We now show how to use the random vectors produced by Algorithm 1 to generate approximatigfi¥ eindom
fields. In so doing, we ensure that the statistical properties of the approximations are largely independent of the number

10° ‘ 10°
———J—a =0 —a=0
---a=05 ---a=05
a=1 | a=1 |
a=1.5 a=1.5
a=2 a=2
10 ‘ 10 ‘ \
10° 102 10 10° 102 10

k k
FIG. 2: For five values ofx, plots of the expected values over 10,000 realizations of the square of the real (left) and

imaginary (right) parts of the Fourier coefficients of the output of Algorithm 1 with= 1000 plotted against the
wave number.

TABLE 1: Slopes of the curves in Fig. 2 between wave num-
bers 1 and 400
(04 0.0 0.5 1.0 1.5 2.0
Slope || 0.002 | —0.492 | —0.990 | —1.504 | —1.958
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264 Stoyanov, Gunzburger & Burkardt

of degrees of freedom used in the approximation. A necessary step for meeting this goal is a rescaling of the random
vectors.

We consider the spatial domdin L] which we subdivide intaV equal intervald; = (z,zj41),7 =0,...,N —
1, wherez; = jAz with Az = L/N. We use Algorithm 1 withM/ = N to generate realizations of the discrete
random vectors (>N (w), whose componentsg.“’N)(w), j =0,...,N — 1 we associate with the intervd},
j=0,...,N — 1, respectively. (We note that often, especially when using finite difference methods for discretizing
partial differential equations, random vectors are instead associated with grid points. See Section 3.1.1 for an example.)
We then set

N
1N (@ w) = Co Y (@) (w), (10)
j=0
wherey;(x) denotes the characteristic function for the interfjalWe wantn(®™) (z; w) to approximate d /f
random fieldh(*)(z; w). Note that because the compone&:@% ) w) all have zero mean, we have, for anythat

EnM (z;w)] =0.
Thus we determin€’, by matching the variance of the approximate random field (10) to that of the corresponding

random fieldh (%) (z; w).
The variance ofi(*")(w) is given by

N-1 N-1
E{meM @ w)]’} = C2E [ Y w@E™ (@) Y w@a (@)
§=0 k=0
N—-1N-1
=2 X3 (@) x(2)E[ESM () gl ™M (w)]
7=0 k=0

We have that @) .
(o _ o) =k

so that

E{ ™) (5 w)]"} = OQZx] E{ [ ()])’}. (12)

We now try to match the result in (11) to the variance of the continuous randomfRelt:; w); we do so for white
and brown random fields.

For a white random field, that is, fat = 0, the variance of|(*) (z; w) is infinite; however, the integral of the
variance over any finite spatial interval is finite and independent of the length of that interval, that is,

/:+A-r E{ M (= w)]Q} = o2 (12)

For white noise, we have that the variance of the approximate randorm field (z; w) if given by

O D SRS (T B e

Then
z+Azx
/ E{ [n(o N (x; w)] } = C3o*Ax
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so that comparing with (12), we have

1 N
2 _ L+ _ IV
Co = Az L

Thus fora = 0, the approximation (10) af(® (z; w) is given by

NN (z; w) = . ZXJ'(@E;‘O’N)((”)' (13

For a brown random field, that is, for = 2, the variance ofy(®) (z; w) is given by
E{[1® (2 w)]*} = % (14)

and the variance of the approximate random figfd™) (z; w) is given by
) N—-1 ) N-—-1
N .
E{ M (@ w)]’} = ¢ 3 i @E{ [V (@)]*} = 3o 3 ;@) +1). (15)
j=0 j=0

We interpret (15) as a piecewise constant approximation to (14) over the uniform partition of the ifitefyanto

N subintervals of lengtthz = L /N, in which case we see that
L
2
=Ar = —
G=ar=

so that fora = 2, the approximation (10) af® (z; w) is given by
N-1
NN (@ w) = VAZ Y (@) (w). (16)
j=0

We generalize tax € (0, 2) by “interpolating” between the valugs, = 1/v/ Az for x = 0 andCy, = v Ax for
o« = 2 in the same manner as we did for the Z transform [see Egs. (4) and (5)]. Thus we set

Cy = (Az)(*—D/2 17)
so that our approximation (10) gf*® (z; w) is given by
N—-1
o, ox— o, N
(N (25 w) = (Az) @ D/2 3 ()£l (w). (18)
§=0

Justifying this “interpolation” approach requires verification that the induced random fields do indeed have the ex-
pectedl/ f* power spectra, which we do in Section 2.2.1.

We summarize the above discussion in the following algorithm that produces a realization of the approximate
1/f* random fieldn () (z; w).

Algorithm 2.
Given the uniform subdivision of the interviil, L] into N subintervald;, 5 = 0,..., N — 1 of lengthAz = L/N
and given the variance?, the approximatiom(*-") (z: w) is determined as follows:

e Use Algorithm 1 to generate a realization of thef™ random vecto€(*") (w) based on sampling according
to a given zero mean Gaussian PDF with variamte

e Set
0N (23 w) = (Az) @ V2N (@) for wel;, j=0,...,N 1.

Again, Algorithm 2 corresponds to Gaussian random fields, but again, it can be easily changed for random fields
having other PDFs.
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266 Stoyanov, Gunzburger & Burkardt

2.2.1 Verification of Algorithm 2 for Generating Realizations of Approximate 1/ f* Random Fields

To verify that the approximate random fielé™ ) (z; w) given in (18) [which is based on the choice fdg made in
(17)] is a good approximation to thg f* random fieldy(*) (z; w), we examine its power spectrum. To this end we
determine the Fourier cosine series#6®V) (z; w), that is, we set

N (z; w) Zn(“N (w) cos(kmz),

where

1 N-1
N (w) = / 10N (2; w) cos (k) dw = / (Az)*D/2 37y (@) (w) cos(kra)da
0 0 j=0

N-1 1 N-1
= (Az)(x=1)/2 Z &g-“’N)(w)/ x; () cos(kra)dr = (Az)(*=1/2 Z &g“’N)(w)/ cos(kmx)dx

§=0 0 §=0 I
N—-1

~ (Az) D2 N E N () cos (k).
j=0

We set the number of interval§ = 1000 and use Algorithm 2 to determine 10,000 realizations of the approximate
random fieldn (™) (z; w) for each of five values of. Those realizations are used to estimate the expected values

of the first 1ooqn(“ N)( )|2, the square of the Fourier coefficients. In Fig. 3 these are plotted vs the wave number

k. We also determine a linear least-squares fit to the first 800 valu\ﬂ.ﬁ"‘ozfl)(w)\2 to determine the slopes of the

plots in Fig. 3. These are given in Table 2, where we see that the power spectrum of the approximate random field

n(*N) (z; w) indeed has a/f* dependence.

ISESESRee]
[

N—=—OO| |
>

10°

k

FIG. 3: For five values ofx, plots of the expected values over 10,000 realizations of the square of the first 1000
Fourier coefficients of the approximate random field determined by Algorithm 2 plotted against the wave number. For

this figure,N = 1000,0 = 1, andL = 1.

TABLE 2: Slopes of the curves in Fig. 3 between wave nhum-
bers 1 and 800
o 0.0 0.5 1.0 1.5 2.0
Slope || —0.004 | —0.480 | —0.959 | —1.441 | —1.927
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Before providing further results about approximate ™ random fields generated by Algorithm 2, we clarify some
notation we use because, so far, there has no ambiguity possible, but now there is. We, in fact, consider two types of
averages, both of which involve integrals; integral averages with respect to the random varia@eghted by the
PDFp(w), are referred to as expected values, whereas averages with respect to the spatiahvarai#éerred to as
spatial averages. Likewise, second moments with respectare referred to as variances, whereas second moments
with respect tac are referred to as energies. It is important to note that spatial averages and expected values commute,
that is, the spatial average of an expected value is the same as the expected value of a spatial average. However, once
even a single type of second moment is involved, statistical and spatial operations do not commute.

We consider the variance of the spatial average of the approximate randonifiéYdl(z; w), that is, the variance

of
. I N—1 N-1 L
/ 0N (z; w) da :/ (Az) D23 (@) eSS (w) da = (Az) =072 3" £V () V X (@) dw]
JO 0 j=0 7=0 0
N-1
— (Ag)(atDr2 Z &g“’N)(w)- (19)
§=0

Note that the expected value of the spatial average vanishes because the approximate random fields also have zero
expected value at every point We use seven values fof ranging from 10 to 50,000 and, for eadh we generate
a sample of size 10,000. The resulting statistics are given in Fig. 4, for which the Gaussian white noise samples are
chosen to have unit variance. We observe that for a fixed valueinfthe Gaussian samples, the computed noise
discretizations have statistical properties that differ appreciably as a functi@nAigo, for fixed values otx, the
statistics are largely insensitive to the value of the spatial discretization parametet is, they are converging with
increasingV.

We next consider the expected value of the “energy”

L L |N-1 N-1
e @t = @a [T et @) Y @et @) dr
0 0 i=0 =0
N—-1N-1 L
_ N N
= (A0 3 Y eV @ ) [ o
i=0 =0 0
a1 N [l ]2 [ I
~ (Ax) V@) [ @ = (aa) Y [ (w)]
j=0 0 j=0
: 1.1
—a=0 —N=
W a5 - fégg
. oa=l5 =1000
107 -l a = =10000}/
=20000|
:500007

Var[fol n@N) (z; w)dx]

10 0 0.5

FIG. 4: Foro = 1 andL = 1, the variance of the spatial average of the piecewise constant approxififdteandom
field () (z; w) given in (18) as a function aW (left) andw (right).
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We use seven values foF and five values fow. For each paif«, V), we generate 10,000 realizations of the approx-
imate random fielah (™) (z; w) which we use to estimate the expected value of the energy. The results are given in
Fig. 5. We see that fox < 1, the expected value of the energy increases linearly Withut for « > 1, it remains
bounded and converges. For= 1, the expected value of the energy increases logarithmically. That can be seen from
the linearity of the right plot in Fig. 5, which is a semi-log plot of the expected value of the energyfes.o = 1;

the slope of the that plot is approximately 0.095. Thusdor 1, a sequence of approximaté f* random fields

having increasingly finer grid resolution will have an energy that grows unboundedly. Thus, the behavior of energy of
the approximate random fields with respecttmimics that of the random fields themselves.

3. DIFFERENTIAL EQUATIONS WITH 1/f* RANDOM FIELD INPUTS

In this section we consider differential equations havifig* random fields appearing in source or coefficient func-
tions. Our goal is to study how the value ®fin such random inputs affects statistical properties of the solutions of
the differential equations.

3.1 Linear Two-Point Boundary Value Problem with 1/f* Source Term
We consider the two-point boundary value problem

2
—%u(“) (x;w) = n(® (x;w) forz e (0,1), u(0) =0, u(l) =0, (20)
wheren(® (z; w) is al/f* random field. The solution(®) (z; w) of (20) is itself a random field. How the statistical
properties of that field are affected by the choicedds what is of interest here.

In order to define a computational method for solving (20), we again use the uniform partition of the interval
[0,1] into the N subintervald;, j = 0,..., N — 1 of lengthAz = 1/N and also use the computable approximation
(N (z; w) given in (18) of the random field(*) (z; w). We seek a piecewise linear finite element approximation
u(®N) (z; w) of the solutionu(®) (z; w) of (20), that is, an approximate solution of the form

N
al N (. 0) = 3 7™ () (2), D
=0

7(1‘:1

10 2 4 6 8 10

N N
FIG. 5: Left: The expected value of the energy of the approximate randomrfi&ld) (z; w) as a function otx and
N. Right: The expected value of the energy of the approximate pink noise randomfié{di(z; w) as a function of
N.
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whered;(z), 5 = 0,1,..., N denote the usual piecewise linear hat functions corresponding to the partition of the
interval [0, 1] into the subintervalg;, j = 0,..., N. Then, settingLé“’N)(w) =0 andug\‘;"N)(w) = 0, the standard
Galerkin method results in the linear system

0 (@) + 20 (@) — i (w) &7 (w) + £ (w)

— (Ag)@-D/2
(Az)? 82 2 (22)
fory=1,...,.N—1
from which the unknown nodal valueg ™" (w), j = 1,...,N — 1, of u(®N)(z; w) are determined. In (22),

ag.""N)(w),j =0,...,N — 1 denote the components of the random veétdr) (w) determined by Algorithm 1.

For givenc, we use Algorithm 1 to generate a realization of the vegforY) (w) and then solve the linear system
(22) to generate the corresponding approximatich™Y) (z; w) of the solution of (20). Realizations af*™) (z; w)
for five values ofx and forN = 1000 are given in Fig. 6. Comparing with Fig. 1 that provides plots of realizations of
the inputn(®") (2; w), we see that as one expects for elliptic equations, the solution is considerably smoother than
the input [19].

Because the expected value of thef* random fieldn(®) (z; w) vanishes for all: € [0, L], it is easy to see,
from the linearity of the differential operator and from the boundary conditions in (20), that the expected value of the
solutionu(® (z; w) vanishes as well. As a result, the expected value of the spatial avera@e @f; w) also vanishes.

Likewise, the linearity of the discrete system (22), the fact tk&ﬁtm(w) = ug\‘;"N)(w) = 0, and the fact that the
expected value of eacifi""N)(w) vanishes imply that for alf = 1,..., N — 1, the expected value af§“’N)(w),
j=1,...,N — 1 vanishes as well, as does the expected value of the finite element approximi&tidh(z; w) for
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FIG. 6: Pairs of realizations of the approximatiaf®™) (z; w), determined from Egs. (21) and (22), to the solution
of (20) for a uniform grid havingV = 1000 subintervals and fos = 1. Top row, left to right:oc = 0 (white noise
input), x = 0.5, anda = 1 (pink noise input). Bottom row, left to rightt = 1.5 and« = 2 (brown noise input).
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all = € [0, L]. This holds true for the spatial averageudf-™) (z; w). Thus to study the effects that the choiceoof
have on the statistics of the approximate solutié™) (z; w), we examine the variance of the spatial average of that
solution.

For each of several values afand N we use Algorithm 1 to sample 10,000 realizations of thelth&* random
vector& (M) (w) which we then use to compute, from Eg. (22), 10,000 realizations of the finite element approxima-
tion u(*N)(z; w) of the solution of Eq. (20). We then compute the variance of the spatial average of the approximate
solutions. The results are given in Fig. 7. From that figure we observe the convergence with respect to inreasing
and, more important, the strong linear dependence on the value of

It is natural to ask if by somehow “tweaking” the variance of the samples from which the input \ié‘ét’?f?(w)
is determined one can have the variance of the spatial averag€-f:; w), or more relevant in practice, of its
approximationu(*)(z; w), independent of the value af. This is indeed possible (see Section 3.2 for further
discussion). However, other statistical properties, for example, the power spectuifh\o{z; w) would still remain
stronglyo dependent. By definition, the power spectrum of thg> random fieldh (%) (z; w) decays as$/f*, where
f denotes the frequency. It is also well known (see [19]) that the solution operator of an elliptic equation such as (20)
effects two orders of smoothing on the data so that we expect the power spectrum of the séfiitiorw) to decay
asl/fot4,

We now verify that the power spectrum of the approximate solutith™) (z; w) does indeed behave in this
manner. (Recall that we have already shown, in Section 2.2, that the approximate randaffffiéldz; w) does
indeed have, for the most part] Af power spectrum.) We apply the same process o) (z; w) that led to Fig. 3
and Table 2 for the approximate input random figlé") (z; w), except that because of the homogeneous boundary
conditions in (20), we now use the Fourier sine series. The analogous result§-for(z; w) are provided in the left
plot of Fig. 8 and Table 3. Note that the power spectrum decays at a faster rate for high values of the wave number;
this is mostly due to the smoothing caused by the right-hand side in (22), in which the input noise vector is averaged
over two successive components. This is why, for Table 3, we computed the slopes of the curves in Fig. 8 using only
the first 100 wave numbers. In any case, we clearly observe an approgififate* decay in the power spectrum for
the approximate solution*V) (z; w). Thus, that power spectrum is strongly dependent on the valoe of

10X 10 -
—N=10
— 9 - --N=250 ||
3 ——N=500
< L o~ N=1000
= g ——N=10000/|
3 3o =20000
T . - - N=50000
ENN|
\d: 6
3 5l
<o
= 4
3
~ 3l
‘ ‘ ‘ |
2O 0.5 1 1.5 2

Q
FIG. 7: The variance of the spatial average of the approximatién’¥) (z; w) determined from Egs. (21) and (22) to
the solution of (20) as a function of and NV for o = 1.

TABLE 3: Slopes of the curves in the left plot in Fig. 8 be-
tween wave numbersand100
o 0.0 0.5 1.0 1.5 2.0
slope || —4.157 | —4.661 | —5.175 | —5.715 | —6.126
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10° 10°

10° 10°
k k

FIG. 8: For five values ofx, plots of the expected values over 10,000 realizations of the square of the first 1000 Fourier
coefficients of the finite element approximation (left) and finite difference approximation (right) of the solution of (20)
plotted against the wave number. For this figuve= 1000 ando = 1.

3.1.1 Comparison with Finite Difference Discretizations

For comparison purposes, we briefly consider a standard finite difference approximation of the solution of (20). We
use the same grid setup as used for the finite element discretization. We again hazsg%’ﬂ'ﬁw), j=0,...,N

denotes approximations of the nodal values of the exact solution of (20), thatui%",‘)(xfcj; w). Now, however, the
components of the random input vector are associated witiVthd interior grid nodes instead of grid intervals, that
is, the components of the random vediét~ 1) (w) are associated with the of valug€? (z,; w), j = 1,..., N—1

of the random fielch(® (z; w) evaluated at the interior grid points. Note that the sdrhe)(*~1)/2 scaling of the
random vector is needed in the finite difference case.

The standard finite difference discretization of (20) leads to the linear system

N N N
—uf (w) + 2uf M (W) =l (w)

(Az)?

= (Az) @ D2V V(@) forj=1,...,N-1 (23)

along withu(()“’N)(w) =0 andug\‘,’"N)(w) = 0. Comparing with (22), we see that the left-hand side is the same but

that the right-hand side does not involve the averaging of neighboring components of the randord( ¥ettdy (w).

To see how this lack of averaging affects statistical properties of the approximate solution, we repeat the process that
led to the left plot of Fig. 8 and Table 3 for the finite element case. For the finite difference case, the results are given
in the right plot of Fig. 8 and Table 4. Comparing with the finite element results, we do not see any smoothing of the
power spectrum at higher frequencies; in fact, we see a decrease in the rate of decay of the power spectrum. In Table 3,
we again see the expectedf**+* power spectrum.

TABLE 4: Slopes of the curves in right plot of Fig. 8 between
wave numberg and200
o 0.0 0.5 1.0 1.5 2.0
Slope || —3.938 | —4.442 | —4.957 | —5.500 | —5.968
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3.2 Linear Two-Point Boundary Value Problem with Random Coefficients

Next we introduce noise into a coefficient of the Poisson problem. Consider the problem

2

%u(“) (z;w) + [a+ '™ (2; w)]ul® (z;w) =0 for z € (0,1),
with a = (4.57)? andb = (7/2)? and wheren(® (z; w) denotes ar / f* random field. Problems of this form arise
in acoustics, for example, where case the coefficient denotes the square of the speed of sound. Of course, for such
problems the coefficient should be positive, but here we consider (24) which has, if for exaffiple; w) denotes
a Gaussiarl/f* random field, realizations with negative coefficient. The deterministic solution corresponding to
N (z; w) = 0 is given byuge () = sin(4.57x).

In (24) we replace the random fietd®) (x; w) by its approximatiom(®™)(z; w) and then, as in Section 3.1,
discretize via a finite element method based on piecewise linear polynomials, thus obtaining the linear system

u(l)=1 (24)

(o,N) (o,N) (e, N)
w (W) = 2w (w) Fusyy (W) Az _
j—1 J . j+1 - {[a (ﬁx)(oc 1>/2b£§°ﬁ’fv)(w)} [ué‘if”(w) 2u§a,N)(w)

+ [a + (Am)(“_l)/2b£§-“’N)(w)} [ugifw(w) + 2u§-°"N)(w)} } =0 for j=1,....N—1

(25)

along withu!* (w) = 0 andu'y (w) = 1.
We consider the difference!*V) (z; w) — uqe () between the approximate solution and the deterministic so-
lution. Realizations of that difference for five valuescofind for N = 1000 are given in Fig. 9. We then compute
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FIG. 9: Pairs of realizations of the deviation of the approximatiofi-N) (z; w) to the solution of (24) from the
deterministic solution fofN = 1000 ando = 1. Top row, left to right:x = 0 (white noise input)x = 0.5, andx = 1
(pink noise input). Bottom row, left to rightt = 1.5 anda = 2 (brown noise input).
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10,000 realizations for eachand different values oV and gather statistics. In particular, we determine the expected
value and variance qfol [u(“7N)(x; W) — Udet (x)] dx (see Fig. 10). We also provide, in Fig. 11, plots for the expected
values offo1 [u("‘W)(a:; W) = uget ()] *dz. In all cases, a strong dependencexaand convergence with respectito
is observed. We also see, in Fig. 12, a dependenceinrhe power spectrum afl®N) (z; ) — uget ().

In all of the examples so far, we chose= 1, that is, all random vectors were generated from an underlying
standard normal distribution with variance 1. We can adjust the valuesofthat, for example, the quantities plotted
in Fig. 11 match for different values of. For example, if forx = 0 we choosey, = 0.49 and forx = 1 we chooser

=1, we have that

1 2 1 2
E {/ {u(O’N) (x;w) — udet(x)} dx} =F {/ [u(l’N)(a:; w) — udet(x)} dm} . (26)
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FIG. 10: Expected value (left) and variance (right)ﬁgﬁ [ul*N) (25 ) — uget(z)]dz as a function obx and N for

o=1.
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FIG. 11: Expected value of01 [ul*N) (2; w) — udet(x)]gda: as a function ofx and N for o = 1.
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2 10° 10°

FIG. 12: For five values ofx, plots of the expected values over 10,000 realizations of the square of the first 1000
Fourier coefficients ofi(* ™) (2; w) — uqet () plotted against the wave number. Hehe = 1000 ando = 1.

However, if we examine the power spectra #6¢™Y) (z; w) — uger () andu™N) (z; w) — uqer (x) given in Fig. 13,
we see that the two spectra match only at frequencies with the highest energy density. The decay rate for higher and
lower frequencies is quite different.

3.3 Nonlinear Two-Point Boundary Value Problem with Additive Noise

The final example we consider is the steady-state nonlinear Burgers equation

&? 1d 2
—uM) (2 w) + = — u(“’N)(x;w)} =2u+22° + ¥ (z;w),  w(0)=0, w(l)=1. (27)

ude 2 dx

FIG. 13: For (o,x) = (0.49,0) and (o, x) = (1,1), plots of the expected values over 10,000 realizations of the
square of the first 1000 Fourier coefficientsudf™Y) (z; w) — uqe () plotted against the wave number. Hele,=
1000.
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The exact noise-free solutionig, () = 2. We takeu = 0.1 to increase the relative influence of the nonlinear term
uu, and setc = 1. We obtain approximations of the solutiafz; w) of (27) via a piecewise linear finite element
method, resulting in
N N N N N
L ) 20 w) a3 ) [ (@) = 3 ()] [ (@) + N () + ()
Az 6

(e, N) (e, N)
1 4 1 ET(w) + & w
= (Am)(QH_ %1~ ’x? - §x?+1) + (Ag)(xh)/2 [ EC) 9 . ( )] , for j=1,...,N —1,

3 3

along with uf)“’N)(w) =0 anduﬁ\‘,’"N)(w) = 1. This nonlinear system is solved via Newton’s method, using the
deterministic solution as an initial guess. Realizationg &) (x; w) — uqe (2) for different values ofx are given in

Fig. 14. In Fig. 15 we provide the values for the variancg”o%)i[u(""N) (z; W) — uget ()| dx and the expected value

of fol [u(“vN) (z; w) — udet(x)] ®dz. Once again, we observe that the statistical properties of the solution of (27) have

a strong dependence on

In Fig. 16, we also plot the power spectrum«df-™) (z; w) for N = 1000 and for different values ok. We
observe significant differences between the power spectra forl and almost no differences for > 1. We also see
this from the slopes of the least-squares fits given in Table 5.
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FIG. 14: Pairs of realizations of the approximatiaf®®¥) (z; w) to the solution of (27) for a uniform grid having
N = 1000 subintervals and fos = 1 andp = 0.1. Top row, left to right:oc = 0 (white noise input)x = 0.5, and
o = 1 (pink noise input). Bottom row, left to rightt = 1.5 ando = 2 (brown noise input).
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>

2222222,

2222222,
LI
(onlenlavlavlan]) ()

0 0.5 1 15 2

FIG. 15: The variance off, [u(*N)(z;w) — uaet()]dz (left) and the expected value df [u(®N) (z;w) —
Udet (x)]2dx for the Burger’s equation example (27) with= 1 andp = 0.1.

& 10° 10°

FIG. 16: For five values ofx, plots of the expected values over 10,000 realizations of the square of the first 1000
Fourier coefficients of the difference between the approximate solufitr’) (2; w) and the deterministic (noise
free) solution of (27) plotted against the wave number; h&re; 1,000 ands = 1.

TABLE 5: Slopes of the curves in Fig. 16 between wave numbers
and400
(04 0.0 0.5 1.0 1.5 2.0
Slope || —4.1495 | —4.7176 | —5.4171 | —5.9465 | —6.0076

4. CONCLUDING REMARKS

Whereas generating approximations of colotéd* noise is more expensive than that for white noise<{ 0), we

see that noise is used as inputs to differential equations, resulting in solutions with drastically different properties.
Given that many natural, social, financial, and other phenomena are accurately modefed mgndom fields and

given that white noise remains the most popular means for modeling unknown random inputs in partial differential
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equations, the differences the two have on the solution of the equations is worth considering. In this paper we attempted
to illustrate and quantify these differences in admittedly simple settings that are meant to motivate further studies of
the use ofl / f* noise in the context of partial differential equations.

For example, it is natural to consider the extension of our study to cases in which the spatial domain is multidi-
mensional and in which there is time evolution as well. An immediate observation is that all the observations about
approximatingl/ f* over a spatial interval carry over unchanged to a one-dimensional time interval. If the domain is
a product region of time and space, then standard Fourier transform methods allow us to construct a multidimensional
noise function as the product of one-dimensional noise functions; the component noise functions, in turn, are each
defined by a number of sample points, a variances?, and a value ofx;, which are then input to a multiple-FFT
version of Algorithm 1. As far as the FFT computations are concerned, no distinction need be made between time and
space dimensions. On the other hand, there may be good reasons to use different valaeslof associated with
the time-wise noise component from those used for the spatial components.

Some guidance in choosing the components of the noise parameters in two or higher space dimensions can be
gained from considering the one-dimensional case. Suppose, for instance, that a three-dimensional spatial domain is
being considered. Then the instantaneous energy of the noise signal, with paramgegrsandoc.., will be the same

as that for a noise signal over a one-dimensional region with parameter, / o2 + ocg + &2. In the common case

where there is no directional preference for the noise in the spatial dimensions, it is natural to choose common values
of 02 and,, for all spatial noise components.
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APPENDIX: MATLAB CODE FOR ALGORITHM 1

We provide the code for the MATLAB implementation of Algorithm 1. Note that because MATLAB does not allow
for zero indices, we have shifted the indices by one. An implementation in C can be obtained at [18].

function [ xi ] = f_alpha ( m, sigma, alpha )
hfa = zeros ( 2 *m, 1);
hfa(1) = 1.0;
forj =2 :m
hfa(j) = hfa(-1) * (05 = alpha+ (j-2))/(j-1)
end
hfa(m+1:2 *m) = 0.0;
wfa = [ sigma * randn( m, 1 ); zeros( m, 1 ); |;
[ fh ] = fft( hfa );

[ fw ] = fft( wha );

fh = fh( I:m + 1 );
fw = fw( Im + 1);
fw = fh . = fw;

fw(1) = fw() / 2;

fw(end) = fw(end) / 2;

fw = [ fw; zeros(m-1,1); ];

xi = ifft( fw );

xi = 2 xreal( xi(1:m) );
end
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